scholarly journals Glycerolized Li+ Ion Conducting Chitosan-Based Polymer Electrolyte for Energy Storage EDLC Device Applications with Relatively High Energy Density

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1433 ◽  
Author(s):  
Ahmed S. F. M. Asnawi ◽  
Shujahadeen B. Aziz ◽  
Muaffaq M. Nofal ◽  
Muhamad H. Hamsan ◽  
Mohamad A. Brza ◽  
...  

In this study, the solution casting method was employed to prepare plasticized polymer electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The electrolyte studied in this current work could be established as new materials in the fabrication of EDLC with high specific capacitance and energy density. The system with high dielectric constant was also associated with high DC conductivity (5.19 × 10−4 S/cm). The increase of the amorphous phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC was affected by ESR.

2021 ◽  
Author(s):  
Preeti Jain ◽  
Oleg N. Antzutkin

<p>We report a comparative analysis of non-halogenated surface-active ionic liquids (SAILs), which consists of the surface-active anion, 2-ethylhexyl sulfate, and the phosphonium, and imidazolium cations <i>i.e.,</i> tetrabutylphosphonium ([P<sub>4444</sub>]<sup>+</sup>), trihexyl(tetradecyl)phosphonium ([P<sub>66614</sub>]<sup>+</sup>), and 1-methyl-3-hexylimidazolium ([C<sub>6</sub>C<sub>1</sub>IM]<sup>+</sup>). We explored the thermal and electrochemical properties, <i>i.e.</i>, degradation, melting and crystallization temperatures, and ionic conductivity of this new class of IL. These SAILs were tested as an electrolyte in a multi-walled carbon nanotubes (MWCNTs)-based supercapacitor at various temperatures from 253 to 373 K. The electrochemical performance of different SAILs by varying the cationic core as a function of temperature were compared, in the same MWCNT-based supercapacitor. We found that the supercapacitor cell with [C<sub>6</sub>C<sub>1</sub>IM][EHS] shown high specific capacitance (<i>C<sub>elec</sub></i> in F g<sup>-1</sup>), a high energy density (<i>E</i> in Wh kg<sup>-1</sup>), and a high power density (<i>P</i> in kW kg<sup>-1</sup>) when compared to those for the other SAILs <i>i.e.</i> [P<sub>4444</sub>][EHS], [P<sub>66614</sub>][EHS], and [N<sub>8888</sub>][EHS] at all temperatures. The supercapacitor with an MWCNT-based electrode and [C<sub>6</sub>C<sub>1</sub>IM][EHS], [P<sub>4444</sub>][EHS], and [P<sub>66614</sub>][EHS] as an electrolyte showed a specific capacitance of 148, 90, and 47 F g<sup>-1</sup> (at the scan rate of 2 mV s<sup>-1</sup>) with an energy density of 82, 50, and 26 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>) respectively, at 298 K. The temperature effect can be seen by the three to four-fold increase in the specific capacitance of the cell and the energy density values, <i>i.e.</i>, 290, 198, and 114 F g<sup>-1</sup> (at 2 mV s<sup>-1</sup>) and 161, 110, and 63 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>), respectively, at 373 K. This study reveals that these new SAILs specifically [C<sub>6</sub>C<sub>1</sub>IM][EHS] and [P<sub>4444</sub>][EHS] can potentially be used as electrolytes in the wide range of temperature. The solution resistance (<i>R<sub>s</sub></i>), charge transfer resistance (<i>R<sub>ct</sub></i>), and equivalent series resistance (ESR) also decreased with an increase in temperature for all SAILs as electrolytes. These new SAILs can explicitly be used for high-temperature (wide range of temperature) electrochemical applications, such as efficient supercapacitors for high energy storage due to enhanced specific capacitance, energy, and power density at elevated temperatures. </p>


2021 ◽  
Author(s):  
Preeti Jain ◽  
Oleg N. Antzutkin

<p>We report a comparative analysis of non-halogenated surface-active ionic liquids (SAILs), which consists of the surface-active anion, 2-ethylhexyl sulfate, and the phosphonium, and imidazolium cations <i>i.e.,</i> tetrabutylphosphonium ([P<sub>4444</sub>]<sup>+</sup>), trihexyl(tetradecyl)phosphonium ([P<sub>66614</sub>]<sup>+</sup>), and 1-methyl-3-hexylimidazolium ([C<sub>6</sub>C<sub>1</sub>IM]<sup>+</sup>). We explored the thermal and electrochemical properties, <i>i.e.</i>, degradation, melting and crystallization temperatures, and ionic conductivity of this new class of IL. These SAILs were tested as an electrolyte in a multi-walled carbon nanotubes (MWCNTs)-based supercapacitor at various temperatures from 253 to 373 K. The electrochemical performance of different SAILs by varying the cationic core as a function of temperature were compared, in the same MWCNT-based supercapacitor. We found that the supercapacitor cell with [C<sub>6</sub>C<sub>1</sub>IM][EHS] shown high specific capacitance (<i>C<sub>elec</sub></i> in F g<sup>-1</sup>), a high energy density (<i>E</i> in Wh kg<sup>-1</sup>), and a high power density (<i>P</i> in kW kg<sup>-1</sup>) when compared to those for the other SAILs <i>i.e.</i> [P<sub>4444</sub>][EHS], [P<sub>66614</sub>][EHS], and [N<sub>8888</sub>][EHS] at all temperatures. The supercapacitor with an MWCNT-based electrode and [C<sub>6</sub>C<sub>1</sub>IM][EHS], [P<sub>4444</sub>][EHS], and [P<sub>66614</sub>][EHS] as an electrolyte showed a specific capacitance of 148, 90, and 47 F g<sup>-1</sup> (at the scan rate of 2 mV s<sup>-1</sup>) with an energy density of 82, 50, and 26 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>) respectively, at 298 K. The temperature effect can be seen by the three to four-fold increase in the specific capacitance of the cell and the energy density values, <i>i.e.</i>, 290, 198, and 114 F g<sup>-1</sup> (at 2 mV s<sup>-1</sup>) and 161, 110, and 63 Wh kg<sup>-1</sup> (at 2 mV s<sup>-1</sup>), respectively, at 373 K. This study reveals that these new SAILs specifically [C<sub>6</sub>C<sub>1</sub>IM][EHS] and [P<sub>4444</sub>][EHS] can potentially be used as electrolytes in the wide range of temperature. The solution resistance (<i>R<sub>s</sub></i>), charge transfer resistance (<i>R<sub>ct</sub></i>), and equivalent series resistance (ESR) also decreased with an increase in temperature for all SAILs as electrolytes. These new SAILs can explicitly be used for high-temperature (wide range of temperature) electrochemical applications, such as efficient supercapacitors for high energy storage due to enhanced specific capacitance, energy, and power density at elevated temperatures. </p>


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2020 ◽  
Vol 15 (4) ◽  
pp. 498-503
Author(s):  
Jian Wang ◽  
Yan Zhao ◽  
Dong Zhang ◽  
Yucai Li ◽  
Shiwei Song ◽  
...  

Rational design and construction of hybrid capacitor electrode materials with prominent energy and power density plays an indispensable role for its potential application in energy storage devices. In this work, the nanoflower-like NiCo2O4 samples are successfully prepared on Ni foam via a facile hydrothermal method. The as-fabricated NiCo2O4 samples exhibit superior electrochemical performance with a high specific capacitance of 444.4 F g–1 at 1 A g–1 and excellent capacitance retention. In addition, the as-fabricated device presents a high energy density of 0.298 mWh cm–3 at a power density of 5.71 mW cm–3 and excellent cycle stability with the capacitance retention of 75.6% after 10000 cycles, indicating a promising application as electrodes for energy storage device.


2015 ◽  
Vol 51 (88) ◽  
pp. 15986-15989 ◽  
Author(s):  
Ramkrishna Sahoo ◽  
Anindita Roy ◽  
Soumen Dutta ◽  
Chaiti Ray ◽  
Teresa Aditya ◽  
...  

Fabrication of ultrathin 2D Co3V2O8 nanosheets for pseudocapacitors, with high specific capacitance value, high energy density and excellent rate capability.


2018 ◽  
Vol 47 (47) ◽  
pp. 17146-17152 ◽  
Author(s):  
Xiao Liang ◽  
Qiufan Wang ◽  
Yun Ma ◽  
Daohong Zhang

A two-ply CNT yarn asymmetric supercapacitor was fabricated by assembling a CuCo2O4 nanowire positive electrode and a PPy nanoparticle negative electrode. The full cell exhibits a high specific capacitance of 59.55 mF cm−2 and a high energy density of 0.02 mW h cm−2.


RSC Advances ◽  
2015 ◽  
Vol 5 (129) ◽  
pp. 107098-107104 ◽  
Author(s):  
Chuanshen Wang ◽  
Yi Xi ◽  
Chenguo Hu ◽  
Shuge Dai ◽  
Mingjun Wang ◽  
...  

A β-NiMoO4 NW supercapacitor lights one LED for 260 s and delivers a large specific capacitance (414.7 F g−1 at 0.25 A g−1), high energy density (36.86 W h kg−1), a maximum power density of 1100 W kg−1 and 65.96% capacity retention after 6000 cycles.


Author(s):  
Tianrui Wang ◽  
Yupeng Su ◽  
Mi Xiao ◽  
Meilian Zhao ◽  
Tingwu Zhao ◽  
...  

AbstractCoTe@reduced graphene oxide (CoTe@rGO) electrode materials for supercapacitors were prepared by a one-step hydrothermal method in this paper. Compared with that of pure CoTe, the electrochemical performance of CoTe@rGO was significantly improved. The results showed that the optimal CoTe@rGO electrode material has a remarkably high specific capacitance of 810.6 F/g at a current density of 1 A/g. At 5 A/g, the synthesized material retained 77.2% of its initial capacitance even after 5000 charge/discharge cycles, thereby demonstrating good cycling stability. Moreover, even at a high current density of 20 A/g, the composite electrode retained 79.0% of its specific capacitance at 1 A/g, thus confirming its excellent rate performance. An asymmetric supercapacitor (ASC) with a wider potential window and higher energy density was assembled by using 3 M KOH as the electrolyte, the CoTe@rGO electrode as the positive electrode, and active carbon as the negative electrode. The operating voltage of the supercapacitor could be increased to 1.6 V, and its specific capacitance could reach 112.6 F/g at 1 A/g. The specific capacitance retention rate of the fabricated supercapacitor after 5000 charge/discharge cycles at 5 A/g was 87.1%, which confirms its excellent cycling stability. In addition, the ASC revealed a high energy density of 40.04 W·h/kg at a power density of 799.91 W/kg and a high power density of 4004.93 W/kg at an energy density of 33.43 W·h/kg. These results collectively show that CoTe@rGO materials have broad application prospects.


Sign in / Sign up

Export Citation Format

Share Document