scholarly journals Tensile Strength Analysis of Thin-Walled Polymer Glass Fiber Reinforced Samples Manufactured by 3D Printing Technology

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2783
Author(s):  
Jerzy Bochnia ◽  
Malgorzata Blasiak ◽  
Tomasz Kozior

The paper describes the mechanical properties, determined on the basis of a tensile strength test of a composite material based on glass-fiber reinforced polyamide and obtained by Selective Laser Sintering—SLS. The material used is PA 3200 GF. Thin walled samples with non-standard nominal thicknesses of 1, 1.4 and 1.8 mm, manufactured in three printing directions X, Y and Z, were used. The description included the impact of printing direction on the geometry of the obtained samples and tensile strength as well as the dependency of tensile strength on the sample thickness. The results can be useful for design engineers and process engineers designing thin-walled components produced with SLS. Thin samples were obtained with a considerable deviation spread of the actual dimension from the nominal one. It was found that the tensile strength of thin samples is much lower than those of standard cross-sections, which should be taken into account in the design of thin-walled elements.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 360 ◽  
Author(s):  
Hyun Kim ◽  
Joo Sohn ◽  
Youngjae Ryu ◽  
Shin Kim ◽  
Sung Cha

This study analyzes the fundamental principles and characteristics of the microcellular foaming process (MCP) to minimize warpage in glass fiber reinforced polymer (GFRP), which is typically worse than that of a solid polymer. In order to confirm the tendency for warpage and the improvement of this phenomenon according to the glass fiber content (GFC), two factors associated with the reduction of the shrinkage difference and the non-directionalized fiber orientation were set as variables. The shrinkage was measured in the flow direction and transverse direction, and it was confirmed that the shrinkage difference between these two directions is the cause of warpage of GFRP specimens. In addition, by applying the MCP to injection molding, it was confirmed that warpage was improved by reducing the shrinkage difference. To further confirm these results, the effects of cell formation on shrinkage and fiber orientation were investigated using scanning electron microscopy, micro-CT observation, and cell morphology analysis. The micro-CT observations revealed that the fiber orientation was non-directional for the MCP. Moreover, it was determined that the mechanical and thermal properties were improved, based on measurements of the impact strength, tensile strength, flexural strength, and deflection temperature for the MCP.


2017 ◽  
Vol 8 (2) ◽  
pp. 304-320 ◽  
Author(s):  
Mohamed MA Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of 12 plain concrete specimens to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of using glass fiber reinforced polymer sheets to strengthen plain concrete panels on the performance of concrete under this type of loading. The main findings show that strengthening plain concrete panels with glass fiber reinforced polymer sheets showed satisfactory performance under the impact load; the glass fiber reinforced polymer sheets can be used for strengthening or upgrading concrete structures to improve their resistance against impact. Also, the location of the glass fiber reinforced polymer sheet affects the front and rear face craters.


2021 ◽  
pp. 002199832110316
Author(s):  
Nahit Öztoprak

Joining dissimilar materials to achieve lightweight design and energy efficiency has been increasingly popular. A joint formed by components of particle-reinforced metal and polymer matrix composite combines the merits of both materials. This paper is mainly focused on the research of the tensile lap shear and impact behavior of the dissimilar single-lap joints (SLJs) between SiCp/AA2124 composite and glass fiber-reinforced polypropylene (PP). The effects of out-of-plane loading applied from different surfaces of SLJs on impact responses are evaluated. Hot pressing technique is introduced to manufacture metal/polymer assembly without using any adhesive. The hole drilling effect is investigated with the idea that it may provide weight reduction and also increase the strength of the dissimilar SLJs. The results indicate that the dissimilar SLJs show more Charpy impact strength when the impact is performed on the metal-matrix composite (MMC). Mechanical properties of SLJs are adversely affected by a drilled hole in the MMC adherend.


2011 ◽  
Vol 66-68 ◽  
pp. 683-687 ◽  
Author(s):  
Li Zhang ◽  
Yan Jue Gong ◽  
Shuo Zhang

By designing the different formulations of the composites and adopting optimized technology including extrusion and molding, the effects of the Micro-capsules on the properties of nylon composites are analyzed by the impact property test. The mechanical impact property of the glass fiber reinforced nylon composites is influenced little if the content of the self-healing microcapsules added is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


2013 ◽  
Vol 393 ◽  
pp. 88-93 ◽  
Author(s):  
Mohd Shahneel Saharudin ◽  
Aidah Jumahat ◽  
Amir Z.A. Kahar ◽  
Shaharudin Ahmad

mpact resistance is one of the main consideration in measuring service life, liability and safety of polymer composite structures or products. Impact resistance of a composite material can be measured in terms of energy absorption, depth of penetration and total impact time. In this study, the influence of alumina Al2O3on impact properties of short glass fiber reinforced polymer was investigated. The drop weight impact tests were performed in accordance to ASTM D7136 standard using Dynatup impact tester. Based on the results, the incorporation of micronsize alumina filler enhanced the energy absorbed during crushing, reduced the depth of penetration of the impactor and expanded the total impact time hence improved the impact properties of the composites.


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


Author(s):  
Kulwinder Singh Chani ◽  
JS Saini ◽  
H Bhunia

This work deals with the accelerated aging of the bolted joints prepared from glass fiber-reinforced nanocomposite laminates. ASTM D5961 was used to design the bolted joint, and the geometric parameters, i.e. width-to hole-diameter ( W/ D) ratio and edge distance-to-hole diameter ( E/ D) ratio were fixed to 6 and 5, respectively. ASTM D1544 was used for accelerated aging, and a maximum of 500 h cyclical ultraviolet exposure, 8 h of ultraviolet radiation at 60 ℃ followed by 4 h of condensation at 50 ℃, was given to the specimens. A full factorial design of experiment was conducted on important control factors, i.e. aging time, bolt torque, and material variation, using response surface methodology. To investigate the effect of nanoclay content, a range of 0–5 wt% was investigated. Specimens with 3 wt% of nanoclay demonstrated optimum tensile strength and were selected to manufacture the bolted joint. Nanoplatelets having high aspect ratio increased the specific surface area and thus the tensile strength of the nanocomposite. It was found that the strength of the joints prepared with and without the nanoclay content decreased with the increase in the duration of aging. However, the joints with the nanoclay content had higher failure loads. The strength retention in the joints with nanoclay content was more in comparison to the joints made with neat epoxy. Nanoclay acted as a mechanical interlock at the fiber–matrix interface and improved the interfacial bond strength. A good dispersion of nanoclay also acts as a barrier to the moisture, which eventually reduces the degradation of the composite material due to the lesser fiber–matrix de-bonding under accelerated aging conditions.


2020 ◽  
Vol 978 ◽  
pp. 277-283
Author(s):  
Kishore Kumar Mahato ◽  
Krishna Chaitanya Nuli ◽  
Krishna Dutta ◽  
Rajesh Kumar Prusty ◽  
Bankim Chandra Ray

Fiber reinforced polymeric (FRP) composite materials are currently used in numerous structural and materials related applications. But, during their in-service period these composites were exposed to different changing environmental conditions. Present investigation is planned to explore the effect of thermal shock exposure on the mechanical properties of nanoTiO2 enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were conditioned at +70°C temperature for 36 h followed by further conditioning at – 60°C temperature for the similar interval of time. In order to estimate the thermal shock influence on the mechanical properties, tensile tests of the conditioned samples were carried out at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with different nanoTiO2 content (i.e. 0.1, 0.3 and 0.5 wt. %). The tensile strength of 0.1 wt.% nanoTiO2 GFRP filled composites exhibited higher ultimate tensile strength (UTS) among all other composites. The possible reason may be attributed to the good dispersion of nanoparticles in polymer matrix corresponds to proper stress transfer during thermal shock conditioning. In order to access the variations in the viscoelastic behavior and glass transition temperature due to the addition of nanoTiO2 in GFRP composite and also due to the thermal shock conditioning, dynamic mechanical thermal analysis (DMTA) measurements were carried out. Different modes of failures and strengthening morphology in the composites were analyzed under scanning electron microscope (SEM).


Sign in / Sign up

Export Citation Format

Share Document