scholarly journals Influence of the Presence of Disulphide Bonds in Aromatic or Aliphatic Dicarboxylic Acid Hardeners Used to Produce Reprocessable Epoxidized Thermosets

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 534
Author(s):  
Chiara Di Mauro ◽  
Alice Mija

The design of polymers from renewable resources with recycling potential comes from economic and environmental problems. This work focused on the impact of disulphide bonds in the dicarboxylic acids reactions with three epoxidized vegetable oils (EVOs). For the first time, the comparison between aromatic vs. aliphatic dicarboxylic acids, containing or not S–S bonds with EVOs was discussed and evaluated by dynamic scanning calorimetry. The obtained thermosets showed reprocessability, by the dual dynamic exchange mechanism. The virgin and reprocessed materials were characterized and the thermomechanical properties were compared. The thermosets derived from EVOs with high epoxy content combined with aromatic diacids containing disulphide bridges showed high glass transition values (~111 °C), high crosslink densities and good solvent stability.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2503
Author(s):  
Chiara Di Mauro ◽  
Aratz Genua ◽  
Alice Mija

In an attempt to prepare sustainable epoxy thermosets, this study introduces for the first time the idea to use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as hardeners to produce reprocessable resins based on epoxidized camelina oil (ECMO). Two kinds of mixtures were tested: one combines aromatic/aliphatic dicarboxylic acids: 2,2′-dithiodibenzoic acid (DTBA) and 3,3′-dithiodipropionic acid (DTDA); another is the combination of two aromatic structures with acid/amine functionality: DTBA and 4-aminophenyl disulfide (4-AFD). DSC and FT-IR analyses were used as methods to analyze the curing reaction of ECMO with the hardeners. It was found that the thermosets obtained with the dual crosslinked mechanism needed reduced curing temperatures and reprocessing protocols compared to the individual crosslinked thermosets. Thanks to the contribution of disulfide bonds in the network topology, the obtained thermosets showed recycling ability. The final thermomechanical properties of the virgin and mechanical reprocessed materials were analyzed by DMA and TGA. The obtained thermosets range from elastomeric to rigid materials. As an example, the ECMO/DTBA704-AFD30 virgin or reprocessed thermosets have tan δ values reaching 82–83 °C. The study also investigates the chemical recycling and the solvent resistance of these vitrimer-like materials.


2012 ◽  
Vol 85 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Jeevan Prasad Reddy ◽  
Manjusri Misra ◽  
Amar Mohanty

In this research, switchgrass (SG) fiber-reinforced poly(trimethylene terephthalate) (PTT) biocomposites were prepared by extrusion followed by injection molding machine. The methylene-diphenyl-diisocyanate-polybutadiene (MDIPB) prepolymer was used to enhance the impact strength of the biocomposites. In addition, the polymeric methylene-diphenyl-diisocyanate (PMDI) compatibilizer was used to enhance the mechanical properties of the composites. The effect of compatibilizer on mechanical, crystallization melting, thermomechanical, melt flow index (MFI), morphological, and thermal stability properties of the composites was studied. Thermomechanical properties of the biocomposites were studied by dynamic mechanical analysis (DMA). Scanning electron microscopy (SEM) was used to observe the interfacial adhesion between the fiber and matrix. The results showed that MDIPB and PMDI have a significant effect on the mechanical properties of the composites. The impact strength of MDIPB- and PMDI-compatibilized composites was increased by 87 % when compared to the uncompatibilized composite.


2010 ◽  
Vol 10 (10) ◽  
pp. 4879-4892 ◽  
Author(s):  
A. M. Booth ◽  
M. H. Barley ◽  
D. O. Topping ◽  
G. McFiggans ◽  
A. Garforth ◽  
...  

Abstract. Solid state vapour pressures of a selection of atmospherically important substituted dicarboxylic acids have been measured using Knudsen Effusion Mass Spectrometry (KEMS) over a range of 20 K (298–318 K). Enthalpies of fusion and melting points obtained using Differential Scanning Calorimetry (DSC) were used to obtain sub-cooled liquid vapour pressures. They have been compared to estimation methods used on the E-AIM website. These methods are shown to poorly represent – OH groups in combination with COOH groups. Partitioning calculations have been performed to illustrate the impact of the different estimation methods on organic aerosol mass compared to the use of experimental data.


2010 ◽  
Vol 10 (10) ◽  
pp. 23017-23043 ◽  
Author(s):  
A. M. Booth ◽  
W. J. Montague ◽  
M. H. Barley ◽  
D. O. Topping ◽  
G. McFiggans ◽  
...  

Abstract. Knudsen Effusion Mass Spectrometry (KEMS) has been used to measure for the first time the solid state vapour pressures of a series of aliphatic cyclic dicarboxylic acids with increasing ring size. Additionally the atmospherically important compounds; cis-pinonic acid and levoglucosan were also measured. Differential Scanning Calorimetry (DSC) was used to measure melting points, enthalpies and entropies of fusion, which were used to determine sub-cooled liquid vapour pressures for the compounds. The sub-cooled liquid vapour pressure of straight chain, branched and cyclic dicarboxylic acids was compared to a selection of estimation methods.


2010 ◽  
Vol 10 (2) ◽  
pp. 5717-5749
Author(s):  
A. M. Booth ◽  
M. H. Barley ◽  
D. O. Topping ◽  
G. McFiggans ◽  
A. Garforth

Abstract. Solid state vapour pressures of a selection of substituted dicarboxylic acids have been measured using Knudsen Effusion Mass Spectrometry (KEMS). Enthalpies of fusion and melting points obtained using Differential Scanning Calorimetry (DSC) were used to obtain sub-cooled liquid vapour pressures. They have been compared to estimation methods used on the E-AIM website. These methods are shown to poorly represent -OH groups in combination with COOH groups. Partitioning calculations have been performed to illustrate the impact of the different estimation methods on organic aerosol mass compared to the use of experimental data.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2476
Author(s):  
Katarzyna Bednarczyk ◽  
Tomasz Kukulski ◽  
Ryszard Fryczkowski ◽  
Ewa Schab-Balcerzak ◽  
Marcin Libera

The thermal, mechanical and electrical properties of polymeric composites combined using polythiophene (PT) dopped by FeCl3 and polyamide 6 (PA), in the aspect of conductive constructive elements for organic solar cells, depend on the molecular structure and morphology of materials as well as the method of preparing the species. This study was focused on disclosing the impact of the polythiophene content on properties of electrospun fibers. The elements for investigation were prepared using electrospinning applying two substrates. The study revealed the impact of the substrate on the conductive properties of composites. In this study composites exhibited good thermal stability, with T5 values in the range of 230–268 °C that increased with increasing PT content. The prepared composites exhibited comparable PA Tg values, which indicates their suitability for processing. Instrumental analysis of polymers and composites was carried out using Fourier Transform Infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM).


2011 ◽  
Vol 11 (2) ◽  
pp. 655-665 ◽  
Author(s):  
A. M. Booth ◽  
W. J. Montague ◽  
M. H. Barley ◽  
D. O. Topping ◽  
G. McFiggans ◽  
...  

Abstract. Knudsen Effusion Mass Spectrometry (KEMS) has been used to measure for the first time the solid state vapour pressures of a series of aliphatic cyclic dicarboxylic acids with increasing ring size. Additionally the atmospherically important compounds; cis-pinonic acid and levoglucosan were also measured. Differential Scanning Calorimetry (DSC) was used to measure melting points, enthalpies and entropies of fusion, which were used to determine sub-cooled liquid vapour pressures for the compounds. The sub-cooled liquid vapour pressure of straight chain, branched and cyclic dicarboxylic acids was compared to a selection of estimation methods.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 307 ◽  
Author(s):  
Jacek Andrzejewski ◽  
Katarzyna Skórczewska ◽  
Arkadiusz Kloziński

The study focuses on the development of polyoxymethylene (POM)/poly(lactic acid) (PLA) blends with increased impact and thermal resistance. The study was conducted in two phases; in the first part, a series of unmodified blends with PLA content of 25, 50, and 75 wt.% was prepared, while the second part focused on the modification of the PLA/POM (50/50) blends. An ethylene/butyl acrylate/glycidyl methacrylate terpolymer (E/BA/GMA) elastomer (EBA) was used to improve the impact strength of the prepared blends, while reactive blending was used to improve interfacial interactions. We used a multifunctional epoxy chain extender (CE) as the compatibilizer. Static tensile tests and notched Izod measurement were used to evaluate the mechanical performance of the prepared samples. The thermomechanical properties were investigated using dynamic mechanical thermal analysis (DMTA) analysis and heat deflection temperature (HDT)/Vicat softening temperature (VST) methods. The crystallinity was measured using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXS) measurements, while the rheology was evaluated using a rotational rheometer. The paper also includes a structure analysis performed using the SEM method. The structural tests show partial miscibility of the POM/PLA systems, resulting in the perfect compatibility of both phases. The impact properties of the final blends modified by the EBA/CE system were found to be similar to pure POM resin, while the E modulus was visibly improved. Favorable changes were also noticeable in the case of the thermomechanical properties. The results of most of the conducted measurements and microscopic observations confirm the high efficiency of the reaction for PLA as well as for the modified POM/PLA mixtures.


2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


Sign in / Sign up

Export Citation Format

Share Document