scholarly journals Life Cycle Assessment Model of Plastic Products: Comparing Environmental Impacts for Different Scenarios in the Production Stage

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 777
Author(s):  
Viktoria Mannheim

This paper assesses the environmental loads of polypropylene and PP-PE-PET mixed-plastic products throughout the products’ life cycle in the production stage, with particular focus on the looping method. A life cycle model of homogeneous and mixed-plastic products has been developed from the raw material extraction and production phase through its transport with the help of the life cycle assessment method. To find the answers to the questions posed, different impacts were analyzed by the GaBi 9.5 software. The analysis lasted from the beginning of the production process to the end. The aim of this research was to determine the energy and material resources used, the emissions produced, and the environmental impact indicators involved. This article examines three scenarios in the production stage, based on the usage of plastic scrap and process water: (1) plastic scrap and wastewater are recirculated with looping method; (2) plastic scrap goes through an incineration process and wastewater is treated in a municipal wastewater treatment plant; (3) plastic scrap is sent to a municipal landfill and wastewater is treated. This article tries to answer three questions: (1) how can we optimize the production stage? (2) Which materials and streams are recyclable in the design of the life cycle assessment? (3) What is the relationship between the environmental impacts of homogeneous and mixed-plastic products? The results of this research can be used to develop injection-molding processes with lower environmental impacts and lower releases of emissions.

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 356
Author(s):  
Paulina Szulc ◽  
Jędrzej Kasprzak ◽  
Zbysław Dymaczewski ◽  
Przemysław Kurczewski

The efficient and timely removal of organic matter and nutrients from water used in normal municipal functions is considered to be the main task of wastewater treatment plants (WWTPs). Therefore, these facilities are considered to be essential units that are required to avoid pollution of the water environment and decrease the possibility of triggering eutrophication. Even though these benefits are undeniable, they remain at odds with the high energy demand of wastewater treatment and sludge processes. As a consequence, WWTPs have various environmental impacts, which can be estimated and categorized using Life Cycle Assessment (LCA) analysis. In this study, a municipal WWTP based in Poznań, Poland, was examined using the method defined in ISO 14040. ReCiPe Endpoint and Midpoint (v1.11), in a hierarchical approach, were used to evaluate the environmental impacts regarding 18 different categories. All calculations were conducted using a detailed database from 2019, which describes each chosen facility. It was found that the energy component, related to the wastewater treatment process demand and electricity production, is the main determinant of the sum of the environmental impact indicators in light of the modelled energy mix. Therefore, it determines the entire process as an environmentally friendly activity.


1997 ◽  
Vol 35 (10) ◽  
pp. 221-228 ◽  
Author(s):  
P. J. Roeleveld ◽  
A. Klapwijk ◽  
P. G. Eggels ◽  
W. H. Rulkens ◽  
W. van Starkenburg

In this study the insustainability of the treatment of municipal wastewater is evaluated with the LCA-methodology. Life-Cycle Assessments (LCA) analyze and assess the environmental profile over the entire life cycle of a product or process. The LCA-methodology proved to be a proper instrument to evaluate the wastewater treatment plant on the sustainability. However, environmental impacts which are caused by sludge handling should still be classified. Besides that, the LCA should be carried out on regional level instead of on national level. In a situation of high nutrient removal the contribution of the treatment of municipal wastewater to the total insustainability level in the Netherlands is relatively low. When the sustainability of the WWTP has to be improved, the most attention has to be paid to the minimization of discharge from pollutions with the effluent and minimization of the sludge production. Because the contribution of energy consumption is relatively low, less attention can be paid to the minimization of the energy demand. The building of a WWTP and the use of chemicals are not determining the insustainability of the WWTP.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 421
Author(s):  
Dimitra C. Banti ◽  
Michail Tsangas ◽  
Petros Samaras ◽  
Antonis Zorpas

Membrane bioreactor (MBR) systems are connected to several advantages compared to the conventional activated sludge (CAS) units. This work aims to the examination of the life cycle environmental impact of an MBR against a CAS unit when treating municipal wastewater with similar influent loading (BOD = 400 mg/L) and giving similar high-quality effluent (BOD < 5 mg/L). The MBR unit contained a denitrification, an aeration and a membrane tank, whereas the CAS unit included an equalization, a denitrification, a nitrification, a sedimentation, a mixing, a flocculation tank and a drum filter. Several impact categories factors were calculated by implementing the Life Cycle Assessment (LCA) methodology, including acidification potential, eutrophication potential, global warming potential (GWP), ozone depletion potential and photochemical ozone creation potential of the plants throughout their life cycle. Real data from two wastewater treatment plants were used. The research focused on two parameters which constitute the main differences between the two treatment plants: The excess sludge removal life cycle contribution—where GWPMBR = 0.50 kg CO2-eq*FU−1 and GWPCAS = 2.67 kg CO2-eq*FU−1 without sludge removal—and the wastewater treatment plant life cycle contribution—where GWPMBR = 0.002 kg CO2-eq*FU−1 and GWPCAS = 0.14 kg CO2-eq*FU−1 without land area contribution. Finally, in all the examined cases the environmental superiority of the MBR process was found.


2001 ◽  
Vol 44 (2-3) ◽  
pp. 25-30 ◽  
Author(s):  
J. Clauson-Kaas ◽  
T. S. Poulsen ◽  
B. N. Jacobsen ◽  
T. Guildal ◽  
H. Wenzel

The various emissions to water, air and soil from the municipal wastewater treatment plant Avedore Wastewater Service Company are accounted for and quantified in terms of the environmental impacts to which they contribute: global warming, acidification, eutrophication, space demand for controlled deposition of residues, as well as persistent toxicity, human toxicity and eco-toxicity. The impacts are expressed on the same scale, namely as fraction of the total per capita loads in a national scenario 1990, also called the person equivalent or PE1990. This provides a compact and informative overview of the environmental impacts and allows for a holistic prioritisation in the operation and management of the plant. The accounting shows that the resulting emissions per person in the catchment area of the plant correspond to 0.5-5.0% of the average Danish PE1990 for the impacts in question.


Author(s):  
Raghunathan Srinivasan ◽  
Gaurav Ameta

The objective of this paper is to determine and compare the environmental impacts of two toasters: standard and eco-friendly. The most rapidly growing sector for the e-waste world comes from Electronic household products. More than 2 million tons of electronic products are disposed off as solid waste to landfills in the US alone. The demand for energy supplies has been rapidly increasing in the past decade. Strict legislative measures should be enforced to protect the environment by making industries collect back the manufactured products at the End-of-Life (EOL) from the users and recycle the products. If these necessary steps are not taken, then these e-wastes will impose serious threat to society and the environment. In order to re-design environmentally friendly products and facilitate sustainable take-back planning, current products need to be evaluated for their environmental impacts. One of the widely used methodologies to assess the environmental impacts of a product is called Life Cycle Assessment (LCA). LCA is a cradle to grave approach for assessing the environmental impacts of a product. The cradle to grave approach includes raw material phase, manufacturing and assembly phase, use phase, recovery phase and disposal phase. The system boundary for LCA presented in this paper includes material phase, manufacturing phase, use-phase and disposal phase. The functional unit for the LCA is entire life of the toaster which is one year based on manufacturer’s warranty which also includes the rate of usage. The environmental impacts from the two toasters as presented in this paper include eutrophication, acidification, energy-use and global warming. The use phase energy impact is experimentally determined.


Author(s):  
Thaís Andrade de Sampaio Lopes ◽  
Luciano Matos Queiroz ◽  
Asher Kiperstok

Life Cycle Assessment (LCA) was applied to estimate and analyze the environmental impacts from the construction and operation phases of a full-scale wastewater treatment plant (WWTP) located in the municipality of Lauro de Freitas, Bahia, Brazil. The WWTP process consists of the association of an Upflow Anaerobic Sludge Blanket (UASB) reactor followed by four constructed wetlands (CWL) and a disinfection step. The functional unit was defined as one cubic meter of treated effluent during the useful life of this WWTP (20 years). The LCA was carried out using SimaPro® software and the Centre of Environmental Science (CML) assessment method. The environmental impacts during construction phase were mainly from the wooden forms for concrete and the use of reinforcing steel. During the operation phase, the chlorine used as effluent disinfectant caused the greatest impacts in the abiotic depletion and acidification categories. Macronutrient concentrations present in the treated effluent and the methane generated also caused significant environmental impacts during the WWTP’s useful life. The results obtained highlight the importance of the application of a methodology like LCA to assist in decision-making with regard to the implementation, construction and operation of a WWTP.


Sign in / Sign up

Export Citation Format

Share Document