scholarly journals New Polymer Inclusion Membranes in the Separation of Palladium, Zinc and Nickel Ions from Aqueous Solutions

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1424
Author(s):  
Elżbieta Radzyminska-Lenarcik ◽  
Ilona Pyszka ◽  
Wlodzimierz Urbaniak

The new polymer inclusion membrane (PIM) with a 1-alkyltriazole matrix was used to separate palladium(II) ions from aqueous chloride solutions containing a mixture of Zn-Pd-Ni ions. The effective conditions for transport studies by PIMs were determined based on solvent extraction (SX) studies. Furthermore, the values of the stability constants and partition coefficients of M(II)-alkyltriazole complexes were determined. The values of both constants increase with the growing hydrophobicity of the 1-alkyltriazole molecule and have the highest values for the Pd(II) complexes. The initial fluxes, selectivity coefficients, and recovery factors values of for Pd, Zn and Ni were determined on the basis of membrane transport studies. The transport selectivity of PIMs were: Pd(II) > Zn(II) > Ni(II). The initial metal ion fluxes for all the cations increased with the elongation of the alkyl chain in the 1-alkyltriazole, but the selectivity coefficients decreased. The highest values of the initial fluxes at pH = 4.0 were found for Pd(II) ions. The best selectivity coefficients Pd(II)/Zn(II) and Pd(II)/Ni(II) equal to 4.0 and 13.4, respectively, were found for 1-pentyl-triazole. It was shown that the microstructure of the polymer membrane surface influences the kinetics of metal ion transport. Based on the conducted research, it was shown that the new PIMs with 1-alkyltriazole can be successfully used in an acidic medium to separate a mixture containing Pd(II), Zn(II) and Ni(II) ions.

Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 385
Author(s):  
Ilona Pyszka ◽  
Elzbieta Radzyminska-Lenarcik

The new polymer inclusion membrane (PIM) with ethylenediamine-bis-acetylacetone (EDAB-acac) matrix was used for the separation of Zn(II) solutions containing non-ferrous metal ions (Co(II), Ni(II) Cu(II), Cd(II)). The effective conditions for carrying out transport studies by PIMs were determined on the basis of solvent extraction studies. The values of the stability constants and partition coefficients of M(II)-EDAB-acac complexes were determined from the extraction studies. The stability constants increase in series Ni(II) < Cu(II) < Co(II) < Cd(II) < Zn(II), and their logarithms are 8.85, 10.61, 12.73, 14.50, and 16.84, respectively. The transport selectivity of the PIMs were: Zn(II) > Cd(II) > Co(II) > Cu(II) > Ni(II). The established stability constants of the complexes also decrease in this order. The values of three parameters: initial flux, selectivity coefficient, and recovery factor of a given metal after 12 h were selected for the comparative analysis of the transport process. The highest values of the initial fluxes were received for Zn(II), Cd(II), and Co(II). They are, depending on the composition of the mixture, in the range 9.87–10.53 µmol/m2, 5.26–5.61 µmol/m2, and 7.43–7.84 µmol/m2 for Zn(II), Co(II), and Cd(II), respectively. The highest recovery factors were observed for Zn(II) ions (90–98.0%). For Cd, Co and Cu, the recovery factors are high and are within the range 76–83%, 64–79%, and 51–66%, respectively.


2007 ◽  
Vol 3 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Ishaq Abdullah Zaafarany

Abstract          The kinetics of sol-gel transformation between A13+, La 3+ and Th4+ metal ion electrolytes and sodium alginate sol have been studied complexometrically at various  temperatures. In the presence of a large excess of sodium alginate sol concentration over that of metal ion electrolyte, the pseudo first–order plots of exchange showed sigmoidal curves with two distinct stages. The initial part was relatively fast and curved significantly at early times, followed by a slow decrease in the rates of exchange over longer time periods. The rate constants of gelation showed second-order overall kinetics which was first order in the concentration of both reactants. The thermodynamic parameters have been evaluated and tentative gelation mechanisms consistent with the kinetic results of gelation are suggested. The stability of these ionotropic metal-alginate complexes has been discussed in terms of the coordination geometry and strength of chelated bonds.


1949 ◽  
Vol 32 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Mark H. Adams

1. The seven bacterial viruses of the T group, active against E. coli, are much more rapidly inactivated by heat when suspended in 0.1 N solutions of sodium salts than when suspended in broth. 2. The kinetics of this inactivation whether in salt solutions or in broth are those of a first order reaction. 3. The rate of inactivation of phage T5 in 0.1 N NaCl at 37°C. can be greatly decreased by the addition of 10–8 M concentrations of such divalent cations as Ca, Mg, Ba, Sr, Mn, Co, Ni, Zn, Cd, and Cu. 4. An increase in the cation concentration in the suspending medium results in an increase in the stability of phage T5 to the inactivating effects of temperature. 5. The hypothesis is proposed that the increase in stability of phage T5 in the presence of various cations is the result of complex formation between the phage and the metal ion.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


2013 ◽  
Vol 17 (14) ◽  
pp. 1481-1488 ◽  
Author(s):  
Harshita Kumari ◽  
Ping Jin ◽  
Carol Deakyne ◽  
Jerry Atwood

2019 ◽  
Vol 9 (2) ◽  
pp. 151-162
Author(s):  
Shveta Acharya ◽  
Arun Kumar Sharma

Background: The metal ions play a vital role in a large number of widely differing biological processes. Some of these processes are quite specific in their metal ion requirements. In that only certain metal ions, in specific oxidation states, can full fill the necessary catalytic or structural requirement, while other processes are much less specific. Objective: In this paper we report the binding of Mn (II), Ni (II) and Co (II) with albumin are reported employing spectrophotometric and pH metric method. In order to distinguish between ionic and colloidal linking, the binding of metal by using pH metric and viscometric methods and the result are discussed in terms of electrovalent and coordinate bonding. Methods: The binding of Ni+2, Co+2 and Mn+2 ions have been studied with egg protein at different pH values and temperatures by the spectrometric technique. Results: The binding data were found to be pH and temperature dependent. The intrinsic association constants (k) and the number of binding sites (n) were calculated from Scatchard plots and found to be at the maximum at lower pH and at lower temperatures. Therefore, a lower temperature and lower pH offered more sites in the protein molecule for interaction with these metal ions. Statistical effects seem to be more significant at lower Ni+2, Co+2 and Mn+2 ions concentrations, while at higher concentrations electrostatic effects and heterogeneity of sites are more significant. Conclusion: The pH metric as well as viscometric data provided sufficient evidence about the linking of cobalt, nickel and manganese ions with the nitrogen groups of albumin. From the nature and height of curves in the three cases it may be concluded that nickel ions bound strongly while the cobalt ions bound weakly.


1985 ◽  
Vol 50 (2) ◽  
pp. 445-453 ◽  
Author(s):  
Jana Podlahová ◽  
Josef Šilha ◽  
Jaroslav Podlaha

Ethylenediphosphinetetraacetic acid is bonded to metal ions in aqueous solutions in four ways, depending on the type of metal ion: 1) through an ionic bond of the carboxylic groups to form weak complexes with a metal:ligand ratio of 1 : 1 (Ca(II), Mn(II), Zn(II), Pb(II), La(III)); 2) through type 1) bond with contributions from weak interaction with the phosphorus (Cd(II)); 3) through coordination of the ligand as a monodentate P-donor with the free carboxyl groups with formation of 2 : 1 and 1 : 1 complexes (Cu(I), Ag(I)); 4) through formation of square planar or, for Hg(II), tetrahedral complexes with a ratio of 1 : 2 with the ligand as a bidentate PP-donor with the free carboxyl groups (Fe(II), Co(II), Ni(II), Pd(II), Pt(II)). On acidification of the complex solution, the first two protons are bonded to the carboxyl groups. The behaviour during further protonation depends on the type of complex: in complexes of types 1) and 2) phosphorus is protonated and the complex dissociates; in complexes of types 3) and 4) the free carboxyl groups are protonated and the phosphorus-metal bond remains intact. The results are based on correlation of the stability constants, UV-visible, infrared, 1H and 31P NMR spectra and magnetic susceptibilities of the complexes in aqueous solution.


1990 ◽  
Vol 55 (8) ◽  
pp. 1984-1990 ◽  
Author(s):  
José M. Hernando ◽  
Olimpio Montero ◽  
Carlos Blanco

The kinetics of the reactions of iron(III) with 6-methyl-2,4-heptanedione and 3,5-heptanedione to form the corresponding monocomplexes have been studied spectrophotometrically in the range 5 °C to 16 °C at I 25 mol l-1 in aqueous solution. In the proposed mechanism for the two complexes, the enol form reacts with the metal ion by parallel acid-independent and inverse-acid paths. The kinetic constants for both pathways have been calculated at five temperatures. Activation parameters have also been calculated. The results are consistent with an associative activation for Fe(H2O)63+ and dissociative activation for Fe(H2O)5(OH)2+. The differences in the results for the complexes of heptanediones studied are interpreted in terms of steric factors.


Sign in / Sign up

Export Citation Format

Share Document