scholarly journals Preparation of Polyetherimide Nanoparticles by a Droplet Evaporation-Assisted Thermally Induced Phase-Separation Method

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1548
Author(s):  
Peng Zhu ◽  
Huapeng Zhang ◽  
Hongwei Lu

The droplet evaporation effect on the preparation of polyetherimide (PEI) nanoparticles by thermally induced phase separation (TIPS) was studied. PEI nanoparticles were prepared in two routes. In route I, the droplet evaporation process was carried out after TIPS. In route II, the droplet evaporation and TIPS processes were carried out simultaneously. The surface tension and shape parameters of samples were measured via a drop shape analyzer. The Z-average particle diameter of PEI nanoparticles in the PEI/dimethyl sulfoxide solution (DMSO) suspension at different time points was tested by dynamic light scattering, the data from which was used to determine the TIPS time of the PEI/DMSO solution. The natural properties of the products from both routes were studied by optical microscope, scanning electron microscope and transmission electron microscope. The results show that PEI nanoparticles prepared from route II are much smaller and more uniform than that prepared from route I. Circulation flows in the droplet evaporation were indirectly proved to suppress the growth of particles. At 30 °C, PEI solid nanoparticles with 193 nm average particle size, good uniformity, good separation and good roundness were obtained. Route I is less sensitive to temperature than route II. Samples in route I were still the accumulations of micro and nanoparticles until 40 °C instead of 30 °C in route II, although the particle size distribution was not uniform. In addition, a film structure would appear instead of particles when the evaporation temperature exceeds a certain value in both routes. This work will contribute to the preparation of polymer nanoparticles with small and uniform particle size by TIPS process from preformed polymers.

2018 ◽  
Vol 238 ◽  
pp. 02002
Author(s):  
Fangjing Sun ◽  
Yi Zhang ◽  
Jiawei Zhang ◽  
Xixi Yan ◽  
Xiaoyu Liu ◽  
...  

In this experiment, ultrafine iron phosphate micro-powder was prepared by hydrothermal method which used phosphate slag as an iron source. The effects of reaction temperature, surfactants type and amount on its particle size were explored. The samples were characterized by using Malvern Laser Particle Size Analyzer (MS2000), X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX).The results showed that at 160 °C, 1 wt%CTAB, monoclinic iron phosphate micro-powder was obtained with an average particle size about 0.4 μm which also has a good dispersion in aqueous solution.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


2012 ◽  
Vol 463-464 ◽  
pp. 760-763
Author(s):  
Zhen Zhao Pei ◽  
Hong Bin Xu ◽  
Yi Zhang

Nanoparticles of Cr2O3 were successfully obtained via hydrothermal reduction of CH3OH. The oxidant and chromium source was CrO3. The process needs no stirrer or surfactant and the CrO3 concentration was 0.83mol/L. The obtained products were loosely agglomerated Cr2O3 nanoparticles with the average size of 29 to 79 nm. Influences of reactant ratios and calcination temperatures on the specific surface area and average particle size were discussed. And the morphology of nanoparticles was investigated by use of field-emission scanning electron microscope.


1995 ◽  
Vol 10 (7) ◽  
pp. 1644-1652 ◽  
Author(s):  
Abhijit S. Gurav ◽  
Toivo T. Kodas ◽  
Jorma Joutsensaari ◽  
Esko I. Kauppincn ◽  
Riitta Zilliacus

Gas-phase particle size distributions and lead loss were measured during formation of (Bi,Pb)-Sr-Ca-Cu-O and pure PbO particles by spray pyrolysis at different temperatures. A differential mobility analyzer (DMA) in conjunction with a condensation particle counter (CPC) was used to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. For (Bi,Pb)-Sr-Ca-Cu-O, as the processing temperature was raised from 200 to 700 °C, the number average particle size decreased due to metal nitrate decomposition, intraparticle reactions forming mixed-metal oxides and particle densification. The geometric number mean particle diameter was 0.12 μm at 200 °C and reduced to 0.08 and 0.07 μm, respectively, at 700 and 900 °C. When the reactor temperature was raised from 700 and 800 °C to 900 °C, a large number (∼107 no./cm3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls. Particles made at temperatures up to 700 °C maintained their initial stoichiometry over the whole range of particle sizes monitorcd; however, those made at 800 °C and above were heavily depleted in lead in the size range 0.5–5.0 μm. The evaporative losses of lead oxide from (Bi,Pb)-Sr-Ca-Cu-O particles were compared with the losses from PbO particles to gain insight into the pathways involved in lead loss and the role of intraparticle processes in controlling it.


1959 ◽  
Vol 32 (3) ◽  
pp. 814-824
Author(s):  
Maurice Morton ◽  
Samuel Kaizerman ◽  
Mary W. Altier

Abstract A theoretical relation has been derived for the equilibrium swelling of latex particles. The equilibrium solubility and rate of solution of solvents were measured on a series of polystyrene latex fractions of varying particle size. The solvents used were styrene, toluene, and chlorocyclohexane. It was found, as predicted by theory, that the equilibrium amount of solvent imbibed by latex particles is a direct function of the particle diameter and an inverse function of the interfacial energy at the surface of the particles. The molecular weight of the polymer has no effect on the equilibrium swelling, within the range from 100,000 to several million molecular weight units. The rate of imbibition of these solvents appears to be extremely rapid, indicating that equilibrium solubility would appear to be maintained in most polymerization reactions. The fact that a particular solvent is a “good” solvent for the polymer does not necessarily result in a greater swelling of the particles, since the solvent may show a higher interfacial energy against the aqueous phase. The soap titration method is best for determining the average particle size of a latex for purposes of predicting equilibrium swelling.


1961 ◽  
Vol 34 (2) ◽  
pp. 433-445 ◽  
Author(s):  
E. Schmidt ◽  
P. H. Biddison

Abstract Knowledge of mass distribution of particle sizes in latex is very important to the latex technologist. Therefore, it is desirable to have available a simple method for the determination of mass distribution of particle sizes. This paper presents a method, based on fractional creaming of latex with sodium alginate, which can be used in any laboratory without special equipment. The method is particularly advantageous for analyzing latexes of very wide particle size distributions. When analyzed with an electron microscope, these latexes require counting a very large number of particles. McGavack found that partial creaming of normal hevea latex with ammonium alginate gives concentrates of larger average particle size than the original latex. He found that the average particle size in the cream approaches that of the original latex as the amount of creaming agent is increased. In a previous paper from this laboratory, Schmidt and Kelsey demonstrated that the phenomenon of fractionation according to particle size with increasing amounts of creaming agent is applicable in a wide variety of anionic latex systems and in colloidal silica. Their results indicated also the existence of a quantitative relationship, independent of the nature of the dispersed particles, between the concentration of creaming agent and size of creamed particles. Maron confirmed fractionation with respect to particle size as a consequence of partial creaming with alginate. He showed that the mass average particle sizes of fractions, determined optically, cumulate to that of the original latex. Although the previous paper by Schmidt and Kelsey implied the basic concept of a method of determining particle size distribution by fractional creaming, it was not exploited at that time. In order to adapt the fractional creaming phenomenon to a quantitative method for particle size determination, we required a more precise knowledge of the relation between creaming agent concentration and size of particles creamed. It was proposed to establish this relationship with the aid of the electron microscope. Various factors influencing the creaming of latex, such as polymer concentration, electrolyte, soap content, and variability of the creaming agent, had to be considered in standardizing the creaming procedure.


2009 ◽  
Vol 24 (10) ◽  
pp. 3050-3056 ◽  
Author(s):  
Bing Yan ◽  
Jianhua Wu

YVO4: 10%RE3+(RE = Eu, Sm, Dy, Er) nanophosphors have been synthesized by a facile modified hydrothermal technology to obtain the high purity. The key procedure for this hydrothermal process is the adding order of precursors, in which excess sodium vanadate should be added in the solution of rare earth nitrates. The microstructure (crystal phase, morphology, particle size) of these phosphors are characterized by x-ray powder diffraction, scanning electron microscope, and transmission electron microscope, which indicates that there are some cube-like crystals with tetragonal zircon structure and the average particle size is approximately 40 nm. The luminescent behaviors for the four rare earth ion-activated YVO4nanophosphors have been studied, and, for YVO4: 10%Eu3+nanophosphors in particular, it is found that a different hydrothermal process influences the phase composition, microstructure, and photoluminescence. This result suggests that the hydrothermal synthesis process (by adding sodium vanadate to the solution of rare earth nitrates) is favorable for YVO4nanophosphor to obtain pure phase, small particle size, long luminescent lifetime, and high luminescence quantum efficiency.


2014 ◽  
Vol 587-589 ◽  
pp. 788-791
Author(s):  
Ling Li ◽  
Hua Yan Zhang ◽  
Xiao Wei Li ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Sulfur-doped nanoTiO2transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, thiourea, organic carboxylic acid, NH3H2O, D-sorbitol etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, nanolaser particle size analyzer, ultraviolet-visible spectrophotometer. In addition, the influence of reaction conditions in the synthesis process was also studied. The results indicate that when nanoparticle doped with 0.5% S, and the reflux time was 15 min, the photocatalytic performance of sulfur-doped TiO2hydrosol was best.


2021 ◽  
Author(s):  
C. Nirmala ◽  
M Srid

Abstract Endophyte mediated nanoparticles fabrication was emerging as a new frontier in nanomedicines that produce high biocompatible and functionalized silver nanoparticles. In this study, silver nanoparticles were successfully biosynthesized from the extracellular extract of endophytic bacterium Pantoea anthophila isolated from the stem of Waltheria indica for the first time. The synthesised nanoparticles were characterized by UV-Visible and Fourier Transform Infra-Red spectroscopy. The structural analysis is done by X-ray diffraction and the stability was studied by dynamic light scattering and particle size analyser. The size and shape were observed by Transmission Electron Microscope, Scanning Electron Microscope and Energy Dispersive X-Ray spectrum. Further, the nanoparticles were evaluated for antimicrobial and antioxidant properties. Synthesized nanoparticle showed a strong absorption band in the UV-Visible range at 410 nm. The average particle size was found to be 16.8 nm with spherical shaped, crystalline nature. Good zones of inhibition at various ranges were detected against a broad range of human pathogenic bacteria and fungi. A strong free radical scavenging activity of silver nanoparticles with IC50 values 30.75, 19.47, 34.59, 41.12, 27.24, 28.16, 36.21 µg/ml was obtained that was comparable to the reference. The study suggests that the silver nanoparticles can be biosynthesised from endophytic P. anthophila metabolites with significant therapeutic potential. With proper validation, the biosynthesised silver nanoparticles can be developed as a promising antiviral and anticancer drug candidate.


1937 ◽  
Vol 10 (2) ◽  
pp. 309-311
Author(s):  
H. A. Curran ◽  
T. R. Dawson

Abstract Some ten years ago, when so-called “colloidal” zinc oxides were being introduced to the rubber manufacturing industry, two samples were investigated to determine their behavior in rubber compared with ordinary good quality zinc oxide used in rubber. According to accounts published at the time, “colloidal” zinc oxide possesses an average particle size just within the limit of resolution of high-power microscopes, and an average particle diameter of 0.15 micron. In rubber it has been claimed to impart superior reinforcement, higher tensile strength, greater resistance to abrasion, and enhanced activation of organic accelerators. In the following report, samples A and B represent two samples of the same grade of “colloidal” zinc oxide, and C a good grade of regular zinc oxide.


Sign in / Sign up

Export Citation Format

Share Document