scholarly journals The Effect of Chlorhexidine Disinfectant Gels with Anti-Discoloration Systems on Color and Mechanical Properties of PMMA Resin for Dental Applications

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1800
Author(s):  
Zbigniew Raszewski ◽  
Danuta Nowakowska ◽  
Włodzimierz Więckiewicz ◽  
Agnieszka Nowakowska-Toporowska

Chlorhexidine (CHX)-based dental hygiene products are widely used by dental patients. As these products may have long-term contact with denture poly(methyl methacrylate) (PMMA) resin, anti-discoloration systems (ADSs) were included in them to prevent discoloration of the natural teeth and dental materials. Purpose: The aim of this study was to evaluate the effect of two newly designed CHX-containing gels with ADSs and two commercial products with ADSs (Curasept 0.5% and Curasept 1%) in preventing staining and to analyze the mechanical properties of heat-curing PMMA denture base resin. Materials and methods: Twenty-five discs (five for each test group) of PMMA dental resin with a thickness of 1 mm and a diameter of 20 mm were polymerized according to the manufacturer’s instructions and stored in distillate water at a temperature of 37 °C. The surface of the specimens was covered with two commercially available gels—Curasept 1% and Curasept 0.5%, or two experimental gel formulations containing 1% CHX. PMMA specimens stored in distilled water were used as control. The initial values of color and Brinell hardness of the specimens were measured immediately after specimen preparation. The changes in color and Brinell hardness, as well as water sorption, and solubility of the specimens were measured after one year of conditioning. Statistical analysis of the obtained data was performed using one-way analysis of variance and Dunn–Bonferroni post hoc tests. Results: In the group of specimens covered with gel 1 with citric acid or Curasept 0.5%, the color change was clinically acceptable (ΔE* < 2.7). In the specimens stored in contact with gel 2 with polyvinylpyrrolidone (PVP) and Curasept 1%, the ΔE* values were 3.6 and 3.67, respectively. In the control group, the level of hardness decreased significantly from 150 to 140 during the experiment. In addition, a statistically significant decrease in hardness was observed in specimens stored with Curasept 1% and gel 2 with PVP. Specimens stored in contact with Curasept 0.5% and gel 1 with citric acid also showed a lower hardness, but the change was not statistically significant. The sorption of all the groups of PMMA specimens ranged from 22.83 to 24.47 µg/mm3, with no significant differences found between them. All the PMMA specimens stored in contact with the tested CHX gels exhibited a significantly higher solubility (6.84 ± 7.91 µg/mm3) compared to the control group (6.74 µg/mm3), with the highest solubility noted for specimens stored with Curasept 1%. Conclusions: The results showed that CHX used in the gel form with ADSs at a concentration of 0.5% and the experimental gel containing 1% CHX with citric acid caused limited changes to the color and mechanical properties of the PMMA denture base resin during the study period. These gels may be safely used by dental patients for oral hygiene regimen even for prolonged periods of time. ADSs contained in these gels seem to be effective in preventing CHX discoloration.

2015 ◽  
Vol 9 (1) ◽  
pp. 402-408 ◽  
Author(s):  
A.A.R. Khaledi ◽  
M. Bahrani ◽  
S. Shirzadi

Statement of the Problem: Bonding failure between acrylic resin and soft liner material and also gradual loss of soft liner resiliency over time are two impending challenges frequently recognized with a denture base embraced with a resilient liner. Since patients drink various beverages, it is crucial to assess the influences of these beverages on physical characteristics of soft liners. Purpose: This in vitro study envisioned to assess the influence of food simulating agents (FSA) on the hardness of a silicone soft liner by employing a Shore A durometer test and also evaluate its bond strength to a denture base resin by using tensile bond strength test. Materials and Methods: To test the hardness of samples, 50 rectangular samples (40 mm × 10 mm × 3 mm) were prepared from a heat-polymerized polymethyl methacrylate (Meliodent). Mollosil, a commercially available silicone resilient liner, was provided and applied on the specimens following the manufacturer’s directions. In order to test tensile bond strength, 100 cylindrical specimens (30 mm × 10 mm) were fabricated. The liners were added between specimens with the thicknesses of 3 mm. The specimens were divided into 5 groups (n=10) and immersed in distilled water, heptane, citric acid, and 50% ethanol. For each test, we used 10 specimens as a baseline measurement; control group. All specimens were kept in dispersed containers at 37ºC for 12 days and all solutions were changed every day. The hardness was verified using a Shore A durometer and the tensile bond strength was examined by an Instron testing machine at a cross-head speed of 5 mm/min. The records were analyzed employing one-way ANOVA, Tukey’s HSD, and LSD tests. Results: The mean tensile bond strength ± standard deviation (SD) for Mollosil was as follows for each group: 3.1 ± 0.4 (water), 1.8 ± 0.4 (citric acid), 3.0 ± 0.4 (heptane), 1.2 ± 0.3 (50% ethanol), and 3.8 ± 0.4 (control). The hardness values for each group were: 28.7 ± 2.11 (water), 33.2 ± 2.82 (citric acid), 39.2 ± 4.8 (heptane), 32.3 ± 3.56 (50% ethanol) and 22.2 ± 2.08 (control). Mean values for hardness indicated that all of the food simulating agents significantly increased hardness of the Mollosil soft liner compared to the control group (p<0.05). The results of tensile bond strength depicted that water and FSA decreased the bond strength of the soft liner -denture base resin compared to the control group and it was statistically significant (p<0.05). Conclusion: The food simulating agents could influence the mechanical properties of silicone soft liners; hence, clinicians should inform their patients concerning their possible adverse effects and complications.


2019 ◽  
Vol 801 ◽  
pp. 3-8 ◽  
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon ◽  
Futoshi Nakazawa

The adherence of microorganisms to denture base materials and the consequent formation of biofilms on these surfaces are contributing factors to biofilm-related oral and systemic diseases. Aspiration pneumonia is a potentially life-threatening respiratory infection associated with the entry of foreign materials into the bronchi. Vanillin-incorporated polymethyl methacrylate (PMMA) resin has been developed for the use in dentistry and demonstrated to have antimicrobial activity. Objective: To evaluate antimicrobial property of vanillin-incorporated PMMA denture base resin on biofilm formation of respiratory pathogens. Materials and methods: The heat polymerized PMMA denture base resin samples (Siam Cement Group, Thailand) were prepared according to the percentage of vanillin incorporation (0%, 0.1% and 0.5% vanillin). Another group of commercial resin samples without vanillin (Triplex®, Ivoclar Vivadent, USA) was prepared in the same manner. All samples were coated with sterile unstimulated saliva collected from three healthy adult volunteers at 37 °C for 60 min. The respiratory pathogenic bacteria used in this study were Staphylococcus aureus ATCC 5638, Streptococcus pneumoniae ATCC 49619, and Pseudomonas aeruginosa ATCC 27853. They were prepared to a concentration of approximately 107 colony forming unit (CFU)/mL. The bacterial biofilm formation was done in 96-well plate and incubated at 37°C for 24-48 h. The amount of biofilm was quantified by Cell Counting Kit WST-8 (Dojindo Molecular Technologies, USA) at 420 nm. All tests were performed in triplicate on three separate occasions. One-way ANOVA and Turkey’s test were used for the statistical analysis. Results: The vanillin-incorporated resin groups (0.1% and 0.5% vanillin) had a significant reduction of S. aureus and P. aeruginosa biofilm mass compared with resins without vanillin (0% vanillin and commercial resin groups). No significant difference was observed in the S. pneumonia biofilm formation. Up to 80% and 33% reductions of biofilm mass were demonstrated on P. aeruginosa and S. aureus, respectively. Conclusion: The incorporation of vanillin to denture base PMMA resin could significantly inhibit biofilm formation of respiratory pathogens. Using this PMMA resin, denture base materials with antimicrobial property can be applied to reduce a risk of respiratory infection in denture wearing patients.


Author(s):  
Sara T. Alzayyat ◽  
Ghadah A. Almutiri ◽  
Jawhara K. Aljandan ◽  
Raneem M. Algarzai ◽  
Soban Q. Khan ◽  
...  

Abstract Objective The aim of this study was to evaluate the effects of the addition of low-silicon dioxide nanoparticles (nano-SiO2) on the flexural strength and elastic modulus of polymethyl methacrylate (PMMA) denture base material. Materials and Methods A total of 50 rectangular acrylic specimens (65 × 10 × 2.5 mm3) were fabricated from heat-polymerized acrylic resin. In accordance with the amount of nano-SiO2, specimens were divided into the following five groups (n = 10 per group): a control group with no added SiO2, and four test groups modified with 0.05, 0.25, 0.5, and 1.0 wt% nano-SiO2 of acrylic powder. Flexural strength and elastic modulus were measured by using a 3-point bending test with a universal testing machine. A scanning electron microscope was used for fracture surface analyses. Data analyses were conducted through analysis of variance and Tukey’s post hoc test (α = 0.05). Results Compared with the control group, flexural strength and modulus of elasticity tended to significantly increase (p ˂ 0.001) with the incorporation of nano-SiO2. In between the reinforced groups, the flexural strength significantly decreased (p ˂ 0.001) as the concentrations increased from 0.25 to 1.0%, with the 1.0% group showing the lowest value. Furthermore, the elastic modulus significantly increased (p ˂ 0.001) at 0.05% followed by 1.0%, 0.25%, 0.5%, and least in control group. Conclusion A low nano-SiO2 addition increased the flexural strength and elastic modulus of a PMMA denture base resin.


Author(s):  
Tomohiro Kawaguchi ◽  
Lippo V.J. Lassila ◽  
Hirono Sasaki ◽  
Yutaka Takahashi ◽  
Pekka K. Vallittu

2009 ◽  
Vol 113 (2) ◽  
pp. 716-720 ◽  
Author(s):  
Ayşegül Köroğlu ◽  
Tonguç Özdemir ◽  
Ali Usanmaz

2009 ◽  
Vol 30 (7) ◽  
pp. 2468-2472 ◽  
Author(s):  
Ming-Gene Tu ◽  
Wen-Miin Liang ◽  
Tai-Chin Wu ◽  
San-Yue Chen

2005 ◽  
Vol 4 (2) ◽  
pp. 92-96 ◽  
Author(s):  
Toshio Kubota ◽  
Masato Kobayashi ◽  
Ryosuke Hayashi ◽  
Akihiro Ono ◽  
Junichi Mega

Sign in / Sign up

Export Citation Format

Share Document