scholarly journals Viscoelastic Effects on the Response of Electroelastic Materials

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2198
Author(s):  
Ricardo Diaz-Calleja ◽  
Damián Ginestar ◽  
Vícente Compañ Moreno ◽  
Pedro Llovera-Segovia ◽  
Clara Burgos-Simón ◽  
...  

Electroelastic materials, as for example, 3M VHB 4910, are attracting attention as actuators or generators in some developments and applications. This is due to their capacity of being deformed when submitted to an electric field. Some models of their actuation are available, but recently, viscoelastic models have been proposed to give an account of the dissipative behaviour of these materials. Their response to an external mechanical or electrical force field implies a relaxation process towards a new state of thermodynamic equilibrium, which can be described by a relaxation time. However, it is well known that viscoelastic and dielectric materials, as for example, polymers, exhibit a distribution of relaxation times instead of a single relaxation time. In the present approach, a continuous distribution of relaxation times is proposed via the introduction of fractional derivatives of the stress and strain, which gives a better account of the material behaviour. The application of fractional derivatives is described and a comparison with former results is made. Then, a double generalisation is carried out: the first one is referred to the viscoelastic or dielectric models and is addressed to obtain a nonsymmetric spectrum of relaxation times, and the second one is the adoption of the more realistic Mooney–Rivlin equation for the stress–strain relationship of the elastomeric material. A modified Mooney–Rivlin model for the free energy density of a hyperelastic material, VHB 4910 has been used based on experimental results of previous authors. This last proposal ensures the appearance of the bifurcation phenomena which is analysed for equibiaxial dead loads; time-dependent bifurcation phenomena are predicted by the extended Mooney–Rivlin equations.

2021 ◽  
pp. 197140092198932
Author(s):  
Timo Alexander Auer ◽  
Maike Kern ◽  
Uli Fehrenbach ◽  
Yasemin Tanyldizi ◽  
Martin Misch ◽  
...  

Purpose To characterise peritumoral zones in glioblastoma and anaplastic astrocytoma evaluating T2 values using T2 mapping sequences. Materials and methods In this study, 41 patients with histopathologically confirmed World Health Organization high grade gliomas and preoperative magnetic resonance imaging examinations were retrospectively identified and enrolled. High grade gliomas were differentiated: (a) by grade, glioblastoma versus anaplastic astrocytoma; and (b) by isocitrate dehydrogenase mutational state, mutated versus wildtype. T2 map relaxation times were assessed from the tumour centre to peritumoral zones by means of a region of interest and calculated pixelwise by using a fit model. Results Significant differences between T2 values evaluated from the tumour centre to the peritumoral zone were found between glioblastoma and anaplastic astrocytoma, showing a higher decrease in signal intensity (T2 value) from tumour centre to periphery for glioblastoma ( P = 0.0049 – fit-model: glioblastoma –25.02± 19.89 (–54–10); anaplastic astrocytoma –5.57±22.94 (–51–47)). Similar results were found when the cohort was subdivided by their isocitrate dehydrogenase profile, showing an increased drawdown from tumour centre to periphery for wildtype in comparison to mutated isocitrate dehydrogenase ( P = 0.0430 – fit model: isocitrate dehydrogenase wildtype –10.35±16.20 (–51) – 0; isocitrate dehydrogenase mutated 12.14±21.24 (–15–47)). A strong statistical proof for both subgroup analyses ( P = 0.9987 – glioblastoma R2 0.93±0.08; anaplastic astrocytoma R2 0.94±0.15) was found. Conclusion Peritumoral T2 mapping relaxation time tissue behaviour of glioblastoma differs from anaplastic astrocytoma. Significant differences in T2 values, using T2 mapping relaxation time, were found between glioblastoma and anaplastic astrocytoma, capturing the tumour centre to the peritumoral zone. A similar curve progression from tumour centre to peritumoral zone was found for isocitrate dehydrogenase wildtype high grade gliomas in comparison to isocitrate dehydrogenase mutated high grade gliomas. This finding is in accordance with the biologically more aggressive behaviour of isocitrate dehydrogenase wildtype in comparison to isocitrate dehydrogenase mutated high grade gliomas. These results emphasize the potential of mapping techniques to reflect the tissue composition of high grade gliomas.


1966 ◽  
Vol 49 (5) ◽  
pp. 989-1005 ◽  
Author(s):  
Richard Fitzhugh

In the squid giant axon, Sjodin and Mullins (1958), using 1 msec duration pulses, found a decrease of threshold with increasing temperature, while Guttman (1962), using 100 msec pulses, found an increase. Both results are qualitatively predicted by the Hodgkin-Huxley model. The threshold vs. temperature curve varies so much with the assumptions made regarding the temperature-dependence of the membrane ionic conductances that quantitative comparison between theory and experiment is not yet possible. For very short pulses, increasing temperature has two effects. (1) At lower temperatures the decrease of relaxation time of Na activation (m) relative to the electrical (RC) relaxation time favors excitation and decreases threshold. (2) For higher temperatures, effect (1) saturates, but the decreasing relaxation times of Na inactivation (h) and K activation (n) factor accommodation and increased threshold. The result is a U-shaped threshold temperature curve. R. Guttman has obtained such U-shaped curves for 50 µsec pulses. Assuming higher ionic conductances decreases the electrical relaxation time and shifts the curve to the right along the temperature axis. Making the conductances increase with temperature flattens the curve. Using very long pulses favors effect (2) over (1) and makes threshold increase monotonically with temperature.


2003 ◽  
Vol 18 (9) ◽  
pp. 2068-2078 ◽  
Author(s):  
A. DiCarlo ◽  
H. T. Y. Yang ◽  
S. Chandrasekar

A method for determining the stress–strain relationship of a material from hardness values H obtained from cone indentation tests with various apical angles is presented. The materials studied were assumed to exhibit power-law hardening. As a result, the properties of importance are the Young's modulus E, yield strength Y, and the work-hardening exponent n. Previous work [W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992)] showed that E can be determined from initial force–displacement data collected while unloading the indenter from the material. Consequently, the properties that need to be determined are Y and n. Dimensional analysis was used to generalize H/E so that it was a function of Y/E and n [Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1999); Philos. Mag. Lett. 77, 39 (1998)]. A parametric study of Y/E and n was conducted using the finite element method to model material behavior. Regression analysis was used to correlate the H/E findings from the simulations to Y/E and n. With the a priori knowledge of E, this correlation was used to estimate Y and n.


2004 ◽  
Vol 274-276 ◽  
pp. 241-246 ◽  
Author(s):  
Bo Han ◽  
Hong Jian Liao ◽  
Wuchuan Pu ◽  
Zheng Hua Xiao

2001 ◽  
Vol 19 (3-4) ◽  
pp. 509-512 ◽  
Author(s):  
L. Appolonia ◽  
G.C. Borgia ◽  
V. Bortolotti ◽  
R.J.S. Brown ◽  
P. Fantazzini ◽  
...  

2013 ◽  
Vol 699 ◽  
pp. 641-644
Author(s):  
Xiao Li Bian ◽  
Shuang Bao Li

Nonlinear oscillations of a simply-supported symmetric cross-ply composite laminated rectangular thin plate are investigated in this paper. The rectangular thin plate is subjected to the transversal and in-plane excitations. Based on the Reddy’s third-order shear deformation plate theory and the stress-strain relationship of the composite laminated plate, a two-degree-of-freedom non-autonomous nonlinear system governing equations of motions for the composite laminated rectangular thin plate is derived by using the Galerkin’s method. Numerical simulations illustrate that there exist complex nonlinear oscillations for composite laminated rectangular thin plate.


2013 ◽  
Vol 304 (11) ◽  
pp. E1245-E1250 ◽  
Author(s):  
Donghoon Lee ◽  
Joshua P. Thaler ◽  
Kathryn E. Berkseth ◽  
Susan J. Melhorn ◽  
Michael W. Schwartz ◽  
...  

A hallmark of brain injury from infection, vascular, neurodegenerative, and other disorders is the development of gliosis, which can be detected by magnetic resonance imaging (MRI). In rodent models of diet-induced obesity (DIO), high-fat diet (HFD) consumption rapidly induces inflammation and gliosis in energy-regulating regions of the mediobasal hypothalamus (MBH), and recently we reported MRI findings suggestive of MBH gliosis in obese humans. Thus, noninvasive imaging may obviate the need to assess MBH gliosis using histopathological end points, an obvious limitation to human studies. To investigate whether quantitative MRI is a valid tool with which to measure MBH gliosis, we performed analyses, including measurement of T2relaxation time from high-field MR brain imaging of mice fed HFD and chow-fed controls. Mean bilateral T2relaxation time was prolonged significantly in the MBH, but not in the thalamus or cortex, of HFD-fed mice compared with chow-fed controls. Histological analysis confirmed evidence of increased astrocytosis and microglial accumulation in the MBH of HFD-fed mice compared with controls, and T2relaxation times in the right MBH correlated positively with mean intensity of glial fibrillary acidic protein staining (a marker of astrocytes) in HFD-fed animals. Our findings indicate that T2relaxation time obtained from high-field MRI is a useful noninvasive measurement of HFD-induced gliosis in the mouse hypothalamus with potential for translation to human studies.


2015 ◽  
Vol 3 (1) ◽  
pp. SA77-SA89 ◽  
Author(s):  
John Doveton ◽  
Lynn Watney

The T2 relaxation times recorded by nuclear magnetic resonance (NMR) logging are measures of the ratio of the internal surface area to volume of the formation pore system. Although standard porosity logs are restricted to estimating the volume, the NMR log partitions the pore space as a spectrum of pore sizes. These logs have great potential to elucidate carbonate sequences, which can have single, double, or triple porosity systems and whose pores have a wide variety of sizes and shapes. Continuous coring and NMR logging was made of the Cambro-Ordovician Arbuckle saline aquifer in a proposed CO2 injection well in southern Kansas. The large data set gave a rare opportunity to compare the core textural descriptions to NMR T2 relaxation time signatures over an extensive interval. Geochemical logs provided useful elemental information to assess the potential role of paramagnetic components that affect surface relaxivity. Principal component analysis of the T2 relaxation time subdivided the spectrum into five distinctive pore-size classes. When the T2 distribution was allocated between grainstones, packstones, and mudstones, the interparticle porosity component of the spectrum takes a bimodal form that marks a distinction between grain-supported and mud-supported texture. This discrimination was also reflected by the computed gamma-ray log, which recorded contributions from potassium and thorium and therefore assessed clay content reflected by fast relaxation times. A megaporosity class was equated with T2 relaxation times summed from 1024 to 2048 ms bins, and the volumetric curve compared favorably with variation over a range of vug sizes observed in the core. The complementary link between grain textures and pore textures was fruitful in the development of geomodels that integrates geologic core observations with petrophysical log measurements.


Sign in / Sign up

Export Citation Format

Share Document