scholarly journals Bending and Shear Behaviour of Waste Rubber Concrete-Filled FRP Tubes with External Flanges

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2500
Author(s):  
Wahid Ferdous ◽  
Allan Manalo ◽  
Omar S. AlAjarmeh ◽  
Yan Zhuge ◽  
Ali A. Mohammed ◽  
...  

An innovative beam concept made from hollow FRP tube with external flanges and filled with crumbed rubber concrete was investigated with respect to bending and shear. The performance of the rubberised-concrete-filled specimens was then compared with hollow and normal-concrete-filled tubes. A comparison between flanged and non-flanged hollow and concrete-filled tubes was also implemented. Moreover, finite element simulation was conducted to predict the fundamental behaviour of the beams. The results showed that concrete filling slightly improves bending performance but significantly enhances the shear properties of the beam. Adding 25% of crumb rubber in concrete marginally affects the bending and shear performance of the beam when compared with normal-concrete-filled tubes. Moreover, the stiffness-to-FRP weight ratio of a hollow externally flanged round tube is equivalent to that of a concrete-filled non-flanged round tube. The consideration of the pair-based contact surface between an FRP tube and infill concrete in linear finite element modelling predicted the failure loads within a 15% margin of difference.

2014 ◽  
Vol 925 ◽  
pp. 169-174
Author(s):  
Khalid B. Najim ◽  
Ibrahim A. Al-Jumaily

The aim of the presented study is to investigate the thermo-physical behaviour and mechanical properties of mortar pre-coated crumb rubber concrete block. For this purpose, thermal conductivity, emissivity and effusively will be tested in addition to the specific heat capacity. Thereafter, dynamic calculator software will be used to study the behaviour of a wall that constructed using the suggested concrete block and a comparison with a normal concrete wall will be made. Compressive, splitting tensile and flexural strength were tested as well. The results show that concrete blocks which meet the requirement of strength can be produced with about 300 kg/m3 of crumb rubber aggregate.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2446
Author(s):  
Xiaoqing Xu ◽  
Zhigang Zhang ◽  
Yangao Hu ◽  
Xin Wang

The application of waste tire rubber as aggregates in concrete can help to reduce carbon emissions and achieve green gross domestic product (GDP). However, civil engineers still have concerns about using rubberized concrete in structural members. For the safety of structures, the bearing strength of concrete is a very important parameter to be considered in the design. This paper presented the first experimental and numerical study on the bearing strength of crumb rubber concrete. Prisms of both normal concrete and crumb rubber concrete were tested with loading plates of varying sizes. The test results show that the failure modes and deformation behavior of crumb rubber concrete specimens with different rubber contents were similar to those of normal concrete, and the bearing strength of crumb rubber concrete can be well predicted by current standards for normal concrete. Finite element analysis was performed to further determine the effect of rubber content on the bearing strength of concrete. Proper parameter values for modeling crumb rubber concrete by the concrete damaged plasticity model were investigated. Through the numerical analysis, the reason the rubber content does not have an important effect on the bearing strength of crumb rubber concrete with similar compressive strength was found to be that the influence of rubber content on the tri-axial compression behavior of concrete and the ratio of concrete tensile strength to compressive strength is small. The experimental and numerical results presented in this study provide the insights needed to guide the design of structures utilizing crumb rubber concrete.


2011 ◽  
Vol 477 ◽  
pp. 290-295 ◽  
Author(s):  
Li Bo Bian ◽  
Shao Min Song

Considering large number production of the abandoned tyres and the question of the concrete with mixture of crumb rubber,the mainly task of this paper is to study the mechanical properties of different mixing ratio concrete with vary volume of crumb rubber. The results showed that the workability, apparent density, compressive strength, flexural strength and brittleness index decrease as the increase of crumb rubber. While the anti-crack performance and anti-fatigue performance can be improved. The wear-resistance properties are a little lower than common concrete.


1952 ◽  
Vol 19 (3) ◽  
pp. 375-380
Author(s):  
Morris Feigen

Abstract It is shown that the optimum wall thickness of a cylindrical round tube column is a function of load only and is independent of diameter. The optimum wall thickness of a tapered round thin-walled column is found to be constant along its length. The optimum shape of a tapered round thin-walled column is derived, being that column whose bending stress in the buckled state is constant along its length. The weight ratio of the optimum tapered column to an equal-strength optimum cylindrical column is found to be 0.8924. It is shown that a double truncated cone whose diameter ratio is in the range 0.35 ⩽ D1/D2 ⩽ 0.50 closely approaches the optimum column. If it is specified that no portion of the double truncated cone shall yield, then the weight advantage of the cone over the cylindrical column is rapidly lost as the stress in the cylindrical column approaches the yield stress. In the inelastic range the weight advantage of the tapered column will be less than in the elastic range.


2019 ◽  
Vol 209 ◽  
pp. 340-353 ◽  
Author(s):  
Qi Guo ◽  
Ruyi Zhang ◽  
Qirui Luo ◽  
Han Wu ◽  
Huping Sun ◽  
...  

2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


2014 ◽  
Vol 941-944 ◽  
pp. 739-742
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Jian Peng Zhang

Through modification of the rubber surface, the adhesive ability of rubber particles and cement based materials has increased, thus improving the mechanical properties of rubber concrete. Dosage of styrene butadiene latex was studied under the condition of 5% cement quality, the change regularity of different amount of rubber latex rubber modified concrete compressive, splitting, flexural strength and other mechanical properties. The test results prove that the latex rubber mixing can improve compressive, splitting and flexural strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document