scholarly journals Thermal and Dielectric Properties of Cyanate Ester Cured Main Chain Rigid-Rod Epoxy Resin

Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2917
Author(s):  
Chi-Ping Li ◽  
Chih-Min Chuang

Thermal and dielectric properties of rigid-rod bifunctional epoxy resin 4,4-bis(2,3-epoxypropoxy) biphenyl epoxy (BP) and commercial epoxy resin diglycidyl ether of bisphenol A (DGEBA) were studied using differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermal mechanical analyzer (TMA) and dielectric analyzer (DEA). These two epoxies were cured with cyanate ester hardener 2,2’-bis(4-cyanatophenyl) propane (AroCy B10). The BP/B10 system consisting of a rigid-rod structure exhibited better thermal properties than the DGEBA/B10 system with a flexible structure. Anisotropic BP/B10 (2:1) had the highest 5% weight loss temperature, the highest amount of residue and a smaller thermal expansion coefficient than the commercial DGEBA/B10 system. The BP/B10 system, which cured at the LC phase temperature, had higher Tg than the commercial DGEBA/B10 system, as found from dynamic mechanical analysis. The BP/B10 system also demonstrated better dielectric properties than the commercial DGEBA/B10 system when enough curing agent was provided.

2011 ◽  
Vol 284-286 ◽  
pp. 429-433
Author(s):  
Wen Chao Huang ◽  
Tao Wei ◽  
Min Xian Shi

Two-step casting method was developed for preparing quasi constrained layer damping structural polymeric composite. Quasi constrained layer structural piezoelectric ceramic P82/carbon black(CB)/epoxy resin(EP) composites were successfully prepared when the ceramic content was less than 30% in volume. Dynamic mechanical analysis(DMA) showed that the composites with quasi constrained layer structure exhibited perfect damping properties. When the piezoelectric ceramic P82 volume fraction was 10%, the composite showed the highest loss factor peak value of 1.182, the widest damping temperature range of 44.2°C, and the largest loss area of 32.17. The storage moduli of composites with quasi constrained layer structures were higher than that with non quasi constrained layer structure.


2012 ◽  
Vol 476-478 ◽  
pp. 665-669 ◽  
Author(s):  
Li Yang ◽  
Miao Yin ◽  
Xiu Yun Li ◽  
Han Bing Ma

In this paper, a type of nanoporous polyhedral oligomeric silisesquioxanes (POSS) containing eight functional groups have been synthesized and mixed with diglycidyl ether of bisphenol A (DGEBA) to form epoxy resin networks with nanostructures. The cured octa(aminophenyl) silsesquioxane (1c-POSS) and DGEBA system inherently possesses higher thermal stability and higher char yield than the control epoxy resins. Furthermore, the dielectric constant of the 1c-POSS/DGEBA material (4.36) is substantially lower than that of the neat epoxy resins (4.64) as a consequence the presence of nanoporous POSS cubes in the epoxy matrix.


2020 ◽  
Vol 32 (7) ◽  
pp. 793-800
Author(s):  
Weihui Shang ◽  
Hao Jiang

A novel epoxy monomer 4-trifluoromethyl phenylhydroquinone epoxy resin (4-TFMEP) was synthesized via a multistep procedure including the Meerwein arylation reaction and followed by nucleophilic reaction. The chemical structure of 4-TFMEP was confirmed by proton nuclear magnetic resonance and Fourier-transform infrared spectrum. Then a mixed system (DGEBA/4-TFMEP x%) composed of diglycidyl ether of bisphenol A (DGEBA) and 4-TFMEP was prepared by a melting method without any solvent. After curing, the properties of this series of mixed epoxy resins were measured and compared with the neat DGEBA. As a result, the blend resins exhibited good thermal stability, excellent hydrophobic and low dielectric properties with 4-TFMEP content increasing. Furthermore, the material of DGEBA/4-TFMEP 40% achieves higher glass transition temperature of 104°C and char yield 33% than DGEBA (char yield = 22%) possessed. In the contact angle testing, DGEBA/4-TFMEP 40% shows 127.2° satisfied the standard of hydrophobic material. In addition, by the test of dielectric properties, DGEBA/4-TFMEP x% materials show lower than DGEBA/boron trifluoride ethylamine (BF3MEA) material, because of the introduced side group of fluorine content into the material improves the electronegativity of epoxy material and reduced the polarizability of molecules efficient. Herein, we believe the novel mixed epoxy system (DGEBA/4-TFMEP x%) has a potential application in electronic industries.


Sign in / Sign up

Export Citation Format

Share Document