scholarly journals Development of Long Wavelength Light-Absorptive Homopolymers Based on Pentaazaphenalene by Regioselective Oxidative Polymerization

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4021
Author(s):  
Hiroyuki Watanabe ◽  
Kazuo Tanaka ◽  
Yoshiki Chujo

We report the synthesis and absorption properties of homopolymers consisting of 1,3,4,6,9b-pentaazaphenalene (5AP). Oxidative polymerization in the Scholl reaction was accomplished, and various lengths of homopolymers can be isolated. It should be noted that we scarcely observed the generation of structural isomers at the connecting points, which is often observed in this type of reaction. Therefore, we were able to evaluate electronic structures of the synthesized homopolymers. In addition, it was observed that absorption bands were obtained in the longer wavelength region than the monomer. The computer calculation suggests that the highest occupied molecular orbital (HOMO) energy levels could be lowered by electronic interaction through spatially-separated HOMOs of 5AP. Moreover, we can evaluate the extension of the conjugated system through the meta-substituted skeleton and distance dependency of the main-chain conjugation.

2012 ◽  
Vol 1437 ◽  
Author(s):  
Bart Kuyken ◽  
Xiaoping Liu ◽  
Richard M. Osgood ◽  
Roel Baets ◽  
Gunther Roelkens ◽  
...  

ABSTRACTMost of the research on silicon-on-insulator integrated circuits has been focused on applications for telecommunication. By using the large refractive index of silicon, compact complex photonic functions have been integrated on a silicon chip. However, the transparency of silicon up to 8.5 μm enables the use of the platform for the mid infrared wavelength region, albeit limited by the absorption in silicon oxide from 4 μm on. This could lead to a whole new set of integrated photonics circuits for sensing, given the distinct absorption bands of many molecules in this wavelength region. These long wavelength integrated photonic circuits would preferably need broadband or widely tunable sources to probe these absorption bands.We propose the use of nonlinear optics in silicon wire waveguides to generate light in this wavelength range. Nonlinear interactions in just a few cm of silicon wire waveguides can be very efficient as a result of both the high nonlinear index of silicon and the high optical confinement obtained in these waveguides. We demonstrate the generation of a supercontinuum spanning from 1.53 μm up to 2.55 μm in a 2 cm dispersion engineered silicon nanowire waveguide by pumping the waveguide with strong picoseconds pulses at 2.12 μm [1]. Furthermore we demonstrate broadband nonlinear optical amplification in the mid infrared up to 50 dB [2] in these silicon waveguides. By using this broadband parametric gain a silicon-based synchronously pumped optical parametric oscillator (OPO) is constructed [3]. This OPO is tunable over 70 nm around a central wavelength of 2080 nm.Finally, we also demonstrate the use of higher order dispersion terms to get phase matching between optical signals at very different optical frequencies in silicon wire waveguides. In this way we demonstrate conversion of signals at 2.44 μm to the telecommunication band with efficiencies up to +19.5 dB [4]. One particularly attractive application of such wide conversion is the possibility of converting weak signals in the mid-IR to the telecom window after which they can be detected by a high-sensitivity telecom-band optical receiver.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Wiebeler ◽  
Joachim Vollbrecht ◽  
Adam Neuba ◽  
Heinz-Siegfried Kitzerow ◽  
Stefan Schumacher

AbstractA detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree–Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ye Yu ◽  
Tao Wang ◽  
Xiufang Chen ◽  
Lidong Zhang ◽  
Yang Wang ◽  
...  

AbstractStrain modulation is crucial for heteroepitaxy such as GaN on foreign substrates. Here, the epitaxy of strain-relaxed GaN films on graphene/SiC substrates by metal-organic chemical vapor deposition is demonstrated. Graphene was directly prepared on SiC substrates by thermal decomposition. Its pre-treatment with nitrogen-plasma can introduce C–N dangling bonds, which provides nucleation sites for subsequent epitaxial growth. The scanning transmission electron microscopy measurements confirm that part of graphene surface was etched by nitrogen-plasma. We study the growth behavior on different areas of graphene surface after pre-treatment, and propose a growth model to explain the epitaxial growth mechanism of GaN films on graphene. Significantly, graphene is found to be effective to reduce the biaxial stress in GaN films and the strain relaxation improves indium-atom incorporation in InGaN/GaN multiple quantum wells (MQWs) active region, which results in the obvious red-shift of light-emitting wavelength of InGaN/GaN MQWs. This work opens up a new way for the fabrication of GaN-based long wavelength light-emitting diodes.


1991 ◽  
Vol 127 (1) ◽  
pp. 24 ◽  
Author(s):  
Alessandra Andreoni ◽  
Alberto Colasanti ◽  
Vincenzo Malatesta ◽  
Giuseppe Roberti

2021 ◽  
Author(s):  
Bart Root ◽  
Javier Fullea ◽  
Jörg Ebbing ◽  
Zdenek Martinec

<p>Global gravity field data obtained by dedicated satellite missions is used to study the density distribution of the lithosphere. Different multi-data joint inversions are using this dataset together with other geophysical data to determine the physical characteristics of the lithosphere. The gravitational signal from the deep Earth is usually removed by high-pass filtering of the model and data, or by appropriately selecting insensitive gravity components in the inversion. However, this will remove any long-wavelength signal inherent to lithosphere. A clear choice on the best-suited approach to remove the sub-lithospheric gravity signal is missing. </p><p>Another alternative is to forward model the gravitational signal of these deep situated mass anomalies and subtract it from the observed data, before the inversion. Global tomography provides shear-wave velocity distribution of the mantle, which can be transformed into density anomalies. There are difficulties in constructing a density model from this data. Tomography relies on regularisation which smoothens the image of the mantle anomalies. Also, the shear-wave anomalies need to be converted to density anomalies, with uncertain conversion factors related to temperature and composition. Understanding the sensitivity of these effects could help determining the interaction of the deep Earth and the lithosphere.</p><p>In our study the density anomalies of the mantle, as well as the effect of CMB undulations, are forward modelled into their gravitational potential field, such that they can be subtracted from gravity observations. The reduction in magnitude of the density anomalies due to the regularisation of the global tomography models is taken into account. The long-wavelength region of the density estimates is less affected by the regularisation and can be used to fix the mean conversion factor to transform shear wave velocity to density. We present different modelling approaches to add the remaining dynamic topography effect in lithosphere models. This results in new solutions of the density structure of the lithosphere that both explain seismic observations and gravimetric measurements. The introduction of these dynamic forces is a step forward in understanding how to properly use global gravity field data in joint inversions of lithosphere models.</p>


1982 ◽  
Vol 69 ◽  
pp. 453-454
Author(s):  
W. Wargau ◽  
H. Drechsel ◽  
J. Rahe ◽  
G. Klare ◽  
B. Wolf ◽  
...  

TT Ari was detected by Strohmeier et al. (1957) and is classified as a novalike variable. It was hitherto unclear whether TT Ari is a special type of dwarf nova (Warner, 1976) or an old nova (Cowley et al., 1975). Our group obtained a total of four IUE spectra between 1979 and 1981 in the short and long wavelength region. The first spectrum was taken in July 1979, when the system had a visual brightness of 11.3 magnitudes. The following two IUE observations in November 1980 revealed TT Ari in the lowest optical state (V = 14m.3) observed so far. The fourth spectrum was obtained during the rise to maximum in January 1981, when the system had an apparent magnitude of V = 11m.8. From this behavior, Krautter et al. (1981) concluded that TT Ari is a dwarf nova with extremely extended standstills as they are typical for Z Cam stars.


2019 ◽  
Vol 19 (3) ◽  
pp. 226-229
Author(s):  
S.D. Bardasevska ◽  
I.M. Budzulyak ◽  
S.I. Budzulyak ◽  
B.I. Rachiy ◽  
R.V. Ilnytskyi ◽  
...  

The proposed method of synthesis of CQDs on the basis of nanoporous carbon obtained from plant raw materials. It is established that in the short-wave region a band is registered, which is due to the exciton mechanism of recombination, whereas in the long-wavelength region it is related to the state of defects. The kinetics of PL extinction is not strictly exponential, which most likely indicates the distributed nature of fading from individual emitters.


Sign in / Sign up

Export Citation Format

Share Document