scholarly journals Removal of Trithiocarbonyl End Group of RAFT-Polymerized Poly(stearyl acrylate) and Effect of the End Group on Thermal and Structural Properties

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4169
Author(s):  
Eri Oishi ◽  
Masumi Takamura ◽  
Tatsuhiro Takahashi

The effect of a long alkyl end group on the thermal and structural properties of RAFT (reversible addition-fragmentation chain transfer)-polymerized poly(stearyl acrylate) (PSA) was investigated. RAFT-polymerized PSA was prepared using 2-cyano-2-[(dodecylsulfanylthiocarbonyl) sulfanyl] propane (CDTP) with long alkyl group as a chain transfer agent and azobisisobutyronitrile (AIBN) as an initiator. The RAFT polymerization resulted in the polymerized structure having trithiocarbonyl (TTC) at one end and isobutyronitrile at the other end. RAFT-polymerized PSA was prepared with two different molecular weights. The TTC end group was replaced by isobutyronitrile using radical reaction with AIBN through optimization of the conditions, which resulted in isobutyronitrile at both ends. The effect of the end group on the thermal and structural properties was investigated using differential scanning calorimetry and X-ray diffraction, and the results indicated that the long alkyl group from TTC lowers the melting point and semi-crystalline structure in the case of low molecular weight PSA.

2013 ◽  
Vol 66 (12) ◽  
pp. 1564 ◽  
Author(s):  
Lily A. Dayter ◽  
Kate A. Murphy ◽  
Devon A. Shipp

A single reversible addition–fragmentation chain transfer (RAFT) agent, malonate N,N-diphenyldithiocarbamate (MDP-DTC) is shown to successfully mediate the polymerization of several monomers with greatly differing reactivities in radical/RAFT polymerizations, including both vinyl acetate and styrene. The chain transfer constants (Ctr) for MDP-DTC for both these monomers were evaluated; these were found to be ~2.7 in styrene and ~26 in vinyl acetate, indicating moderate control over styrene polymerization and good control of vinyl acetate polymerization. In particular, the MDP-DTC RAFT agent allowed for the synthesis of block copolymers of these two monomers without the need for protonation/deprotonation switching, as has been previously developed with N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents, or other end-group transformations. The thermal properties of the block copolymers were studied using differential scanning calorimetry, and those with sufficiently high molecular weight and styrene composition appear to undergo phase separation. Thus, MDP-DTC may be useful for the production of other block copolymers consisting of monomers with highly dissimilar reactivities.


Author(s):  
Imelda Keen ◽  
Traian V. Chirila ◽  
Zeke Barnard ◽  
Z. Zainuddin ◽  
Andrew K. Whittaker

A series of linear poly(2-hydroxyethyl methacrylate) (PHEMA) with defined molecular weights (MW) and narrow molecular distributions were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using cumyl dithiobenzoate (CDB) as a chain transfer agent. Murine fibroblasts (3T3) were exposed to eluates from various PHEMA samples, washed or unwashed, and with or without dithioester end groups. After 72 hrs in cell culture, no cytotoxic response was elicited by the polymer samples devoid of dithioester end groups, and which also underwent a thorough washing regime. Specimens throughout the entire MW range were internalized by a macrophage (cell line Raw 264), suggesting that such polymers can be used as models for studying the biodegradation of PHEMA.


2011 ◽  
Vol 89 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Binxin Li ◽  
Daniel Majonis ◽  
Peng Liu ◽  
Mitchell A. Winnik

We describe the synthesis of an end-functionalized copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-hydroxysuccinimide methacrylate (NMS) by reversible addition–fragmentation chain transfer (RAFT) polymerization. To control the polymer composition, the faster reacting monomer (NMS) was added slowly to the reaction mixture beginning 30 min after initating the polymerization (ca. 16% HPMA conversion). One RAFT agent, based on azocyanopentanoic acid, introduced a –COOH group to the chain at one end. Use of a different RAFT agent containing a 4-amino-1,8-naphthalimide dye introduced a UV–vis absorbing and fluorescent group at this chain end. The polymers obtained had molecular weights of 30 000 and 20 000, respectively, and contained about 30 mol% NMS active ester groups.


2019 ◽  
Vol 72 (7) ◽  
pp. 479 ◽  
Author(s):  
Amin Reyhani ◽  
Thomas G. McKenzie ◽  
Qiang Fu ◽  
Greg G. Qiao

Reversible addition–fragmentation chain transfer (RAFT) polymerization initiated by a radical-forming redox reaction between a reducing and an oxidizing agent (i.e. ‘redox RAFT’) represents a simple, versatile, and highly useful platform for controlled polymer synthesis. Herein, the potency of a wide range of redox initiation systems including enzyme-mediated redox reactions, the Fenton reaction, peroxide-based reactions, and metal-catalyzed redox reactions, and their application in initiating RAFT polymerization, are reviewed. These redox-RAFT polymerization methods have been widely studied for synthesizing a broad range of homo- and co-polymers with tailored molecular weights, compositions, and (macro)molecular structures. It has been demonstrated that redox-RAFT polymerization holds particular promise due to its excellent performance under mild conditions, typically operating at room temperature. Redox-RAFT polymerization is therefore an important and core part of the RAFT methodology handbook and may be of particular importance going forward for the fabrication of polymeric biomaterials under biologically relevant conditions or in biological systems, in which naturally occurring redox reactions are prevalent.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3145 ◽  
Author(s):  
Katharina Nieswandt ◽  
Prokopios Georgopanos ◽  
Clarissa Abetz ◽  
Volkan Filiz ◽  
Volker Abetz

In this work, we present a novel synthetic route to diblock copolymers based on styrene and 3-vinylpyridine monomers. Surfactant-free water-based reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization of styrene in the presence of the macroRAFT agent poly(3-vinylpyridine) (P3VP) is used to synthesize diblock copolymers with molecular weights of around 60 kDa. The proposed mechanism for the poly(3-vinylpyridine)-block-poly(styrene) (P3VP-b-PS) synthesis is the polymerization-induced self-assembly (PISA) which involves the in situ formation of well-defined micellar nanoscale objects consisting of a PS core and a stabilizing P3VP macroRAFT agent corona. The presented approach shows a well-controlled RAFT polymerization, allowing for the synthesis of diblock copolymers with high monomer conversion. The obtained diblock copolymers display microphase-separated structures according to their composition.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Toshihiko Arita ◽  
Sabine Beuermann ◽  
Michael Buback ◽  
Philipp Vana

Abstract Reversible addition fragmentation chain transfer (RAFT) polymerizations of styrene in fluid CO2 have been carried out at 80°C and 300 bar using cumyl dithiobenzoate as the controlling agent in the concentration range of 3.5·10-3 to 2.1·10-2 mol/L. This is the first report on RAFT polymerization in fluid CO2. The polymerization rates were retarded depending on the employed RAFT agent concentration with no significant difference between the RAFT polymerization performed in fluid CO2 and in toluene. Full chain length distributions were analyzed with respect to peak molecular weights, indicating the successful control of radical polymerization in fluid CO2. A characterization of the peak widths may suggest a minor influence of fluid CO2 on the addition reaction of macroradicals on the dithiobenzoate group.


2011 ◽  
Vol 64 (12) ◽  
pp. 1602 ◽  
Author(s):  
Yingkai Liu ◽  
Mei Li ◽  
Dengxu Wang ◽  
Jinshui Yao ◽  
Jianxing Shen ◽  
...  

A series of well defined semitelechelic and mid-functionalized poly(poly(ethylene glycol) methyl ether methacrylate)s (poly(PEGMA)s) were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization using thiazolidine-2-thione-functionalized chain transfer agents (CTAs). The thiazolidine-2-thione group was located either at the end or in the middle of polymer chains depending on the different structural CTAs. All polymers were fully analyzed by 1H NMR spectroscopy and GPC, confirming their well-defined structures, such as predesigned molecular weights, narrow polydispersity indices, and high yield chain-end or chain-middle functionalization. The thiazolidine-2-thione functionality located at the end of or at the middle of the polymer chains can react with amine residues on protein surfaces, forming protein-polymer conjugates via amide linkages. The bioactivity of protein conjugates were subsequently tested using micrococcus lysodeikticus cell as substitute. The protein conjugations from the mid-functionalized polymer remained much more protein bioactivity comparing to their semitelechelic counterpart with similar molecular weights, indicating the steric hindrance of the mid-functionalized poly(PEGMA)s lead to the better selective conjugation to protein. The number of polymer chains on the protein surface was additionally evaluated by TNBS analysis, exhibiting that there are less mid-functionalized poly(PEGMA)s linked on the protein surface than the semitelechelic polymers, also supporting the hypothesis that the steric hindrance from branch-structural polymers results in the better reaction selectivity. This synthetic methodology is suitable for universal proteins, seeking a balance between the protein bioactivity and the protein protection by the covalent linkage with polymer, and exhibits promising potential for pharmaceutical protein conjugation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Catherine L. Moad ◽  
Graeme Moad

Abstract Radical polymerization is transformed into what is known as reversible addition–fragmentation chain transfer (RAFT) polymerization by the addition of a RAFT agent. RAFT polymerization enables the preparation of polymers with predictable molar mass, narrow chain length distribution, high end-group integrity and provides the ability to construct macromolecules with the intricate architectures and composition demanded by modern applications in medicine, electronics and nanotechnology. This paper provides a background to understanding the mechanism of RAFT polymerization and how this technique has evolved.


2021 ◽  
Author(s):  
Yuji Imamura ◽  
Shigeru Yamago

Reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylamide in methanol using dithioester RAFT chain-transfer agents was unsuccessful due to degradation of the end group. However, this degradation was completely suppressed by the addition of rare-earth metal triflates (RMTs). As RMTs are effective for the stereoselective polymerization of acrylamides, RAFT polymerization in the presence of RMTs afforded the corresponding poly(acrylamide)s with controlled molecular weight and tacticity. The conditions allowed the synthesis of high-molecular-weight polyacrylamides with molecular weights up to 168,000, low dispersity (<1.5) and high tacticity (90% <i>meso</i> diad selectivity). The degradation mechanism initiated by nucleophilic attack of acrylamide on the dithioester group was experimentally clarified for the first time. As RMT is a Lewis acid, its coordination to the amide group of acrylamide reduces its nucleophilicity.


2021 ◽  
Author(s):  
Yuji Imamura ◽  
Shigeru Yamago

Reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylamide in methanol using dithioester RAFT chain-transfer agents was unsuccessful due to degradation of the end group. However, this degradation was completely suppressed by the addition of rare-earth metal triflates (RMTs). As RMTs are effective for the stereoselective polymerization of acrylamides, RAFT polymerization in the presence of RMTs afforded the corresponding poly(acrylamide)s with controlled molecular weight and tacticity. The conditions allowed the synthesis of high-molecular-weight polyacrylamides with molecular weights up to 168,000, low dispersity (<1.5) and high tacticity (90% <i>meso</i> diad selectivity). The degradation mechanism initiated by nucleophilic attack of acrylamide on the dithioester group was experimentally clarified for the first time. As RMT is a Lewis acid, its coordination to the amide group of acrylamide reduces its nucleophilicity.


Sign in / Sign up

Export Citation Format

Share Document