scholarly journals Three-Dimensional Porous Scaffolds Derived from Bovine Cancellous Bone Matrix Promote Osteoinduction, Osteoconduction, and Osteogenesis

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4390
Author(s):  
Alda Malagón-Escandón ◽  
Mathieu Hautefeuille ◽  
Edgar Jimenez-Díaz ◽  
Jesus Arenas-Alatorre ◽  
José Manuel Saniger ◽  
...  

The use of three-dimensional porous scaffolds derived from decellularized extracellular matrix (ECM) is increasing for functional repair and regeneration of injured bone tissue. Because these scaffolds retain their native structures and bioactive molecules, in addition to showing low immunogenicity and good biodegradability, they can promote tissue repair and regeneration. Nonetheless, imitating these features in synthetic materials represents a challenging task. Furthermore, due to the complexity of bone tissue, different processes are necessary to maintain these characteristics. We present a novel approach using decellularized ECM material derived from bovine cancellous bone by demineralization, decellularization, and hydrolysis of collagen to obtain a three-dimensional porous scaffold. This study demonstrates that the three-dimensional porous scaffold obtained from bovine bone retained its osteoconductive and osteoinductive properties and presented osteogenic potential when seeded with human Wharton’s jelly mesenchymal stromal cells (hWJ-MSCs). Based on its characteristics, the scaffold described in this work potentially represents a therapeutic strategy for bone repair.

2020 ◽  
Vol 4 (34) ◽  
pp. 46-50
Author(s):  
S. Yu. Ivanov ◽  
A. V. Volkov ◽  
D. A. De

Currently, to solve the bone deficiency problem in the maxillofacial region, osteoplastic materials based on allogeneic and xenogenic collagen bone matrix are used, both in pure and in activated forms, by adding growth factors. It is impossible to determine the effectiveness and mechanisms of the osteoplastic materials effect on bone regeneration without a comprehensive study, including not only histological, but also morphometric studies of the structural components and cellular reactions in the impact area. Such studies provide reliable and objective information on the main processes taking place in bone regeneration.Purpose. To determine the spatial distribution of reparative osteogenesis in the presence of some osteoplastic materials in vitro.Materials and methods. Svetlogorsk breed pigs were used as a biomodel. Depending on the osteoplastic preparations used, the animals were divided into four groups of the two in each: 1st — a preparation based on a natural bovine bone graft was injected into bone defects. 2nd — a preparation based on collagenized porcine transplant was injected into bone defects. 3rd — a preparation consisting of 60 % hydroxyapatite (HA) and 40 % beta-tri-calcium phosphate; 4th — control group — the bone defect healed under a blood clot. Animals were removed from the experiment on the 45th day. We examined sections with a thickness of 20 μm using the method of light and fluorescence microscopy.Results. The results indicate different dynamics of the reparative osteogenesis in the presence of osteoplastic materials of different classes. In group 1, the filling of the defect with newly formed bone tissue is not uniform; in group 2, the filling of the defect with newly formed bone tissue is uniform; in group 3 the filling of the defect with non-formed bone tissue is uneven due to the pronounced hyperostosis; in the control group, the filling of the defect with newly formed bone tissue is not happening.Conclusion. Stimulation, the dynamics of reparative osteogenesis and the three-dimensional organization of bone regenerate depend on the osteoplastic material class, which requires further study of the dynamics and three-dimensional organization of bone regenerate to select the optimal bone-replacing agent.


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36175-36184 ◽  
Author(s):  
Junjie Guan ◽  
Jun Yang ◽  
Junqi Dai ◽  
Yunhao Qin ◽  
Yang Wang ◽  
...  

A needle punching and bioinspired mineralization strategy has been developed to fabricate a collagen/hydroxyapatite porous scaffold for bone tissue engineering.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Lara Schorn ◽  
Tim Fienitz ◽  
Kathrin Berndsen ◽  
Norbert R. Kübler ◽  
Henrik Holtmann ◽  
...  

Abstract Background The aim of this study was to compare new bone formation, resorbed bone matrix, and fibrous enclosed residual bone substitute material in laterally augmented alveolar bone defects using allogeneic, pre-treated and cleaned human bone blocks (tested in dogs, therefore considered to be xenogeneic), and pre-treated and cleaned bovine cancellous bone blocks, both with and without a collagen membrane in order to evaluate their augmentative potential. Methods Thirty-two critical size horizontal defects were prepared in the mandible of 4 adult foxhound dogs (8 per dog, 4 on each side). After 3 months of healing, the defects were laterally augmented in a split-mouth-design with either human (HXB) or bovine solvent-preserved bone blocks (BXB). Afterwards, defects were randomly covered with a bovine collagenous membrane (HXB + M, BXB + M). After a healing interval of 6 months, percentages of new bone formation, resorbed bone matrix, and fibrous enclosed residual bone substitute material were compared. Results Results showed little new bone formation of up to 3.7 % in human bone blocks (HXB 3.7 % ± 10.2, HXB + M 0.3 %± 0.4, BXB, 0.1 % ± 0.8, BXB + M 2.6 % ± 3.2, p = > 0.05). Percentages of fibrous encapsulation were higher in human bone blocks than in bovine bone blocks (HXB 71.2 % ± 8.6, HXB + M 73.71 % ± 10.6, BXB, 60.5 % ± 27.4, BXB + M 52.5 % ± 28.4, p = > 0.05). Resorption rates differed from 44.8 % in bovine bone blocks covered with a membrane to 17.4 % in human bone blocks (HXB 17.4 % ± 7.4, HXB + M 25.9 % ± 10.7, BXB, 38.4 % ± 27.2, BXB + M 44.8 % ± 29.6, p = > 0.05). The use of additional membranes did not significantly affect results. Conclusions Within its limitations, results of this study suggest that solvent-preserved xenogenic human and bovine bone blocks are not suitable for lateral bone augmentation in dogs. Furthermore, defect coverage with a membrane does not positively affect the outcome.


Author(s):  
Feihu Zhao ◽  
Yi Xiong ◽  
Keita Ito ◽  
Bert van Rietbergen ◽  
Sandra Hofmann

Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent – assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.


2021 ◽  
Vol 11 (5) ◽  
pp. 805-812
Author(s):  
Hongguang Zhu ◽  
Jianwen Bai ◽  
Meirong Wei ◽  
Ti Li

Objective: In this article, we explored the microscopic structure and composition of the decellular-ized cancellous bone matrix of the calf, and established the animal model of Beagle dog extraction. By applying different bone substitute materials in the extraction of teeth, we observed the new collagen-rich in the preservation of the site after tooth extraction. The protein bone matrix maintained the three-dimensional shape of the alveolar ridge compared to other biological materials. Methods: The microstructure of the new collagen-rich bone matrix was observed by scanning electron microscopy. The porous structure, porosity and distribution of collagen fibers were observed. XRD and infrared spectroscopy were used to further detect the inorganic and organic components in the new collagen-rich bone matrix. The premolar extraction and site preservation model of Beagle dogs were constructed. The changes of collagen-rich bone matrix, Bio-oss bone powder, CGF filling and blank control alveolar ridge volume were compared by CBCT. HE staining was used to observe and compare new bone formation, bone remodeling and bone resorption between groups, and to observe the formation of blood vessels, osteogenic mineralization, trabecular bone formation and inflammatory response in different periods. Results: (1) The acellular bone matrix of bovine cancellous bone completely removes the immunogenicity of the cells and has good histocompat-ibility; the pore diameter and porosity closest to the physiological structure, the main component is hydroxyapatite and collagen. (2) Site preservation can reduce the absorption of alveolar ridge following tooth extraction, preserve sufficient bone mass for alveolar fossa, and retain a good width of attachment, which provides further protection for implant surgery. (3) In the post-extraction site preservation, the CGF group has better bone composition than the BABM group and Bio-oss bone powder. Conclusion: Bovine Acellular Cancellous Bone Matrix is a new type of biological bone matrix. The main components are collagen and hydroxyapatite, which can promote bone formation in the extraction socket.


2021 ◽  
Author(s):  
Apurva Panjla ◽  
Irfan Qayoom ◽  
Ashok Kumar ◽  
Sandeep Verma

Bioactive molecules that enhance or induce osteogenic potential of bone precursor cells have shown vital roles in bone tissue engineering. Herein, we report a novel diketopiperazine, containing taurine amino acid,...


2011 ◽  
Vol 23 (02) ◽  
pp. 127-133 ◽  
Author(s):  
Liao Han Tsung ◽  
Kun-Hung Chang ◽  
Jyh Ping Chen

Aim. Macroporous sponge-like gelatin–hyaluronic acid (Gl–HA) scaffolds cross-linked by EDC were produced using cryogelation technology, which allows for the preparation of highly porous scaffolds without compromising their mechanical properties, and is a more cost-efficient process than freeze drying. The aim of this study is to evaluate the osteogenic potential of porcine adipose-derived stem cells (PADSCs) in GI–HA cryogel. Method. The character of the GI–HA cryogel was evaluated. The pore size and the microstructure were observed using scanning electron microscope (SEM). The swelling ratio was measured. The PADSCs were harvested and isolated from pig inguinal area. Then, the GI–HA cryogel was seeded with PADSCs. The cryogel/ASCs mixture was cultured in osteogenic medium for 0, 3, 7, 14, and 21 days. The cell proliferation was measured by MTS. The RT-PCR of specific osteogenic gene expression such as osteocalcin (OC), RUNX2 was used to assess the osteogenic ability. The SEM was used to observe the interaction between scaffold and cells. Energy dispersive spectrum (EDS) was used to analyze the mineralization around cells. Results. The pore size was variable between 200 and 369 μm. The swelling ratio was around 8.67 ± 1.669%. The cell proliferation was increasing along with the increase of induction periods. The expression of early gene of RUNX2 and late gene of OC mean that the PADSCs were differentiated well into osteoblasts within the cryogels. The SEM detailed that the PADSCs cell can proliferate well in the pore of GI–HA scaffold. The EDS also demonstrated the mineralization of PADSCs in GI–HA scaffold after induction. Conclusions. To conclude, the PADSCs can proliferate and differentiate well into osteoblasts in the three-dimensional, porous, GI–HA cryogel.


2011 ◽  
Vol 493-494 ◽  
pp. 826-831
Author(s):  
A.C.B.M. Fook ◽  
Thiago Bizerra Fideles ◽  
R.C. Barbosa ◽  
G.T.F.S. Furtado ◽  
G.Y.H. Sampaio ◽  
...  

The application of a hybrid composite consisting of biopolymer and calcium phosphate, similar morphology and properties of natural bone, may be a way to solve the problem of the fragility of ceramics without reducing its mechanical properties, retaining the properties of biocompatibility and high bioactivity. This work aims at the preparation and characterization of three-dimensional scaffolds composite HA / biopolymers (chitosan and gelatin). The freeze-drying technique was employed in this study to obtain these frameworks and partial results showed the effectiveness of this method. This involved the study of structural, chemical and morphological frameworks, in order to direct the research suggested the application. The X Ray Diffraction (XRD) and infrared spectroscopy and Fourier transform (FTIR) results confirmed the formation of hydroxyapatite (HA) phase and the presence of characteristic bands of HA and biopolymers in all compositions. The microstructure of the scaffolds study conducted by Scanning Electron Microscopy (SEM) revealed the formation of longitudinally oriented microchannels with interconnected pores. In all compositions the porous scaffolds showed varying sizes and mostly larger than 100μm, and is therefore considered materials with potential for application in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document