scholarly journals Structure–Property Relationship in Melt-Spun Poly(hydroxybutyrate-co-3-hexanoate) Monofilaments

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Figen Selli ◽  
Rudolf Hufenus ◽  
Ali Gooneie ◽  
Umit Halis Erdoğan ◽  
Edith Perret

Poly(hydroxybutyrate-co-3-hexanoate) (PHBH) is a biodegradable thermoplastic polyester with the potential to be used in textile and medical applications. We have aimed at developing an upscalable melt-spinning method to produce fine biodegradable PHBH filaments without the use of an ice water bath or offline drawing techniques. We have evaluated the effect of different polymer grades (mol% 3-hydroxy hexanoate, molecular weight etc.) and production parameters on the tensile properties of melt-spun filaments. PHBH monofilaments (diameter < 130 µm) have been successfully melt-spun and online drawn from three different polymer grades. We report thermal and rheological properties of the polymer grades as well as morphological, thermal, mechanical, and structural properties of the melt-spun filaments thereof. Tensile strengths up to 291 MPa have been achieved. Differences in tensile performance have been correlated to structural differences with wide-angle X-ray diffraction and small-angle X-ray scattering. The measurements obtained have revealed that a synergetic interaction of a highly oriented non-crystalline mesophase with highly oriented α-crystals leads to increased tensile strength. Additionally, the effect of aging on the structure and tensile performance has been investigated.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 497
Author(s):  
Shchetinin ◽  
Aggrey ◽  
Bordyuzhin ◽  
Savchenko ◽  
Gorshenkov ◽  
...  

The structural transformations and magnetic property changes of the Nd16.2FebalCo9.9Ga0.5B7.5 (SG1, SG2) and Nd15.0FebalGa2.0B7.3 (SG3) nanocomposite alloys obtained by melt spinning in the as-quenched state and after annealing at a temperature range of 560–650 °C for 30 min were studied. The methods used were X-ray diffraction analysis, magnetic property measurements, TEM studies, X-ray fluorescence analysis and Mössbauer spectroscopy. Amorphous phase and crystalline phase Nd2Fe14B (P42/mnm) were observed in the alloy after melt spinning. The content of the amorphous phase ranged from 20% to 50% and depended on the cooling rate. Annealing of the alloys resulted in amorphous phase crystallization into Nd2Fe14B and led to the increased coercivity of the alloys up to 1840 kA/m (23.1 kOe) at 600 °C annealing for 30 min. The alloy with the maximum coercivity had a grain size of the Nd2Fe14B phase ≈50–70 nm with an Nd-rich phase between grains.


1992 ◽  
Vol 275 ◽  
Author(s):  
T. J. Folkerts ◽  
S. I. Yoo ◽  
Youwen Xu ◽  
M. J. Kramer ◽  
K. W. Dennis ◽  
...  

ABSTRACTUsing a novel melt-spinning technique, we have produced highly disordered NdBa2Cu3O7−x and GdBa2Cu3Oy−x materials. Samples which were melt-spun in an O2 environment consist of nanocrystals with the tetragonal REBa2Cu3O7−x structure: samples which were processed in an N2 environment consist of an amorphous matrix with small amounts of crystalline BaCu2O2, as shown by x-ray diffraction and electron microscopy. High temperature XRD studies indicate that the BaCu2O2 is eliminated during heating to 500°C in O2 and that the REBa2Cu3O7−x Phase recrystallizes directly from the amorphous matrix at temperatures below 800°C. Preliminary magnetization measurements show that higher temperature heat treatments are needed to restore superconductivity.


2015 ◽  
Vol 798 ◽  
pp. 339-343
Author(s):  
Tan Sui ◽  
Si Qi Ying ◽  
Nikolaos Baimpas ◽  
Gabriel Landini ◽  
Alexander M. Korsunsky

The dentine-enamel junction (DEJ) is an important biological interface between the highly mineralized hard out layer (enamel) and the comparatively softer tooth core (dentine) of teeth. The remarkable performance of this interface provides the motivation for investigation into the detailed structure and function of the DEJ. In this study, synchrotron X-ray diffraction measurements of the DEJ subjected to the in situ uniaxial loading were carried out to capture the structure-property relationship between the DEJ architecture and its response to the applied force. The knowledge of the architecture and properties of the natural DEJ will hopefully help in biomimetic engineering of superior dental restorations and prostheses, and the development of novel materials to emulate the DEJ.


2018 ◽  
Vol 930 ◽  
pp. 345-348
Author(s):  
R.L. Soares ◽  
Walman Benicio Castro

Solidification structures and shape memory characteristics of Ni50Ti36Hf14(at.%) alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change the velocity of cooling wheel from 20 to 40 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on solidification structures and martensitic transformation behaviors is discussed. When the ribbon is produced at a wheel velocity of 40 m/s in melt spinning, the degree of supercooling becomes high because of its thinner thickness.


Author(s):  
J. A. Sarreal

Conventionally cast Fe-Al-C alloys are extremely brittle containing combinations of ferrite, carbide and other phases. Rapid solidification has the potential of altering the microstructure to subsequently change the resulting mechanical properties. An apparent conflict exist concerning the effect of rapid solidification on the resulting microstructure of these alloys. Inoue and co-workers, using transmission electron microscopy (TEM) and electron diffraction analyses, reported the presence of several non-equilibrium phases including austenite (fcc - γ) and ordered austenite (Ll2-γ') structures on alloys containing 1.7 to 2.1 C and 6 to 12 Al in weight % (w/o) on melt spun ribbons 30 μm in thickness. Han and Choo, using x-ray diffraction analysis on 30-48 μm thick melt spun ribbons concluded that this ordered fee phase is rather an austenitic phase in which phase decomposition accompanied by sideband phenomenon had occured.Single roller melt spinning technique was used to make ribbons 35-70 μm thick and 0.5-5 mm wide. X-ray diffration analysis showed single phase austenite for samples 2-6 w/o AI and 2 w/o C. Samples with 8-10 w/o AI and 2 w/o C also showed several superlattice lines in addition to the fundamental fcc peaks.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Esther H. R. Tsai ◽  
Yu Xia ◽  
Masafumi Fukuto ◽  
Yueh-Lin Loo ◽  
Ruipeng Li

Characterization of thin films is of paramount importance for evaluating material processing outcomes/efficiency as well as establishing structure–property/performance relationships. This article introduces grazing-incidence diffraction tomography (GID tomography), a technique that combines grazing-incidence X-ray scattering and computed tomography to quantitatively determine the dimension and orientation of crystalline domains in thin films without restrictions on the beam coherence, substrate type or film thickness. This computational method extends the capability of synchrotron beamlines by utilizing standard X-ray scattering experiment setups.


MRS Advances ◽  
2016 ◽  
Vol 1 (34) ◽  
pp. 2373-2378 ◽  
Author(s):  
Md A Mehedi ◽  
Yanfeng Jiang ◽  
Jian-Ping Wang

ABSTRACTWe are reporting an approach to prepare bulk foils of α″-Fe16N2that can be directly obtained from a melt spinning process. The diffraction peaks from α″-Fe16N2phase were found in X-ray diffraction spectrum of the foil, for which a nitrogen composition of 8.7at% was found by Auger electron spectroscopy. The microstructure of this melt spun foil was analyzed. We found 600 nm subgrains inside 8 μm grains for this foil. The coercivity of the α″-Fe16N2foil was found as 222 Oe with a saturation magnetization of 223 emu/g. We analyzed the coercivity based on the microstructure and proposed a model to explain how to further improve it in melt spun FeN foils.


2000 ◽  
Vol 628 ◽  
Author(s):  
Sophie Besson ◽  
Catherine Jacquiod ◽  
Thierry Gacoin ◽  
André Naudon ◽  
Christian Ricolleau ◽  
...  

ABSTRACTA microstructural study on surfactant templated silica films is performed by coupling traditional X-Ray Diffraction (XRD) and Transmission Electronic Microscopy (TEM) to Grazing Incidence Small Angle X-Ray Scattering (GISAXS). By this method it is shown that spin-coating of silicate solutions with cationic surfactant cetyltrimethylammonium bromide (CTAB) as a templating agent provides 3D hexagonal structure (space group P63/mmc) that is no longer compatible with the often described hexagonal arrangement of tubular micelles but rather with an hexagonal arrangement of spherical micelles. The extent of the hexagonal ordering and the texture can be optimized in films by varying the composition of the solution.


Sign in / Sign up

Export Citation Format

Share Document