scholarly journals Model Validation for the Heat Transfer in Gasket Plate Heat Exchangers Working with Vegetable Oils

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Anișoara-Arleziana Neagu ◽  
Claudia Irina Koncsag

Many models for accurately predicting the performance of gasket plate heat exchangers were developed in the last decades, grouped in three categories: empirical, semi-analytical or theoretical/numerical, with the view to saving materials and energy through correct design of industrial equipment. This work addresses one such model, namely Lévêque correlation modified by Martin and by Dović, which is promising due to the correct assumption of the flow in sine duct channels and the consideration of energy losses caused by flow reversal at plate edges and the flow path changing when entering the chevron angle. This model was validated by our own experimental data under industrial conditions for vegetable oils processing, both in laminar flow (Re = 8–42) and fully developed turbulent flow (Re = 446–1137). Moreover, in this study, particular values for constants/parameters of the model were determined for the corrugation inclination angle relative to vertical direction equal to 30°. Through statistical analysis, this study demonstrates that this particularized form of the generalized Lévêque correlation can be used with confidence.

2009 ◽  
Vol 4 (1) ◽  
Author(s):  
K.Dheena Thayalan ◽  
Ponnusamy Kalaichelvi

The plate heat exchanger exhibits excellent heat transfer characteristic, which allows a very compact design with ease of maintenance and modification of heat transfer area by adding (or) removing plates. Constructional parameters such as flow path, trough angle and corrugation can affect the performance of plate heat exchangers by altering effectiveness (?) and number of transfer unit (NTU). Especially plate heat exchangers play a vital role in petroleum industries for wide range of temperature application. Hence, it was proposed to choose kerosene as cold fluid and hot water as hot fluid in this present investigation. A vertical type of plate heat exchanger, in which flow pattern is maintained as co-current, has been used to conduct the experimental runs. The numbers of plates in the plate heat exchanger used in the present study are 10. The number of flow channels (space maintained between two consecutive channels) allocated for both fluids are 9. Experimental runs have been conducted for different combinations of hot fluid flow rates and cold fluid flow rates for single phase flow, in which hot water is considered as hot streams and kerosene as cold fluid. The thermal performance of plate heat exchanger has been analyzed based on calculated parameters using experimental data set. A similar corrugated plate heat exchanger model having the same dimensions as that of the experimental one was developed with aid of CFD tool. The model was simulated at different operating conditions and compared with experimental results. The simulated results are in good agreement with experimental data. The percentage deviation between experimental results and simulation results for over all heat transfer coefficient is less than ±6%.


Author(s):  
Ahmet Selim Dalkiliç ◽  
Ali Celen ◽  
Mohamed M. Awad ◽  
Somchai Wongwises

Heat exchangers using in-tube condensation have great significance in the refrigeration, automotive and process industries. Effective heat exchangers have been rapidly developed due to the demand for more compact systems, higher energy efficiency, lower material costs and other economic incentives. Enhanced surfaces, displaced enhancement devices, swirl-flow devices and surface tension devices improve the heat transfer coefficients in these heat exchangers. This study is a critical review on the determination of the condensation heat transfer coefficient of pure refrigerants flowing in vertical and horizontal tubes. The authors’ previous publications on this issue, including the experimental, theoretical and numerical analyses are summarized here. The lengths of the vertical and horizontal test sections varied between 0.5 m and 4 m countercurrent flow double-tube heat exchangers with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The measured data are compared to theoretical and numerical predictions based on the solution of the artificial intelligence methods and CFD analyses for the condensation process in the smooth and enhanced tubes. The theoretical solutions are related to the design of double tube heat exchangers in refrigeration, air conditioning and heat pump applications. Detailed information on the in-tube condensation studies of heat transfer coefficient in the literature is given. A genetic algorithm (GA), various artificial neural network models (ANN) such as multilayer perceptron (MLP), radial basis networks (RBFN), generalized regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS), and various optimization techniques such as unconstrained nonlinear minimization algorithm-Nelder-Mead method (NM), non-linear least squares error method (NLS), and Ansys CFD program are used in the numerical solutions. It is shown that the convective heat transfer coefficient of laminar and turbulent condensing film flows can be predicted by means of theoretical and numerical analyses reasonably well if there is a sufficient amount of reliable experimental data. Regression analysis gave convincing correlations, and the most suitable coefficients of the proposed correlations are depicted as compatible with the large number of experimental data by means of the computational numerical methods.


2018 ◽  
Vol 40 (12) ◽  
pp. 1007-1022 ◽  
Author(s):  
Kazushi Miyata ◽  
Hideo Mori ◽  
Takahiro Taniguchi ◽  
Shuichi Umezawa ◽  
Katsuhiko Sugita

2021 ◽  
Vol 9 (1) ◽  
pp. 60-71
Author(s):  
Abeth Novria Sonjaya ◽  
Marhaenanto Marhaenanto ◽  
Mokhamad Eka Faiq ◽  
La Ode M Firman

The processed wood industry urgently needs a dryer to improve the quality of its production. One of the important components in a dryer is a heat exchanger. To support a durable heat transfer process, a superior material is needed. The aim of the study was to analyze the effectiveness of the application of cross-flow flat plate heat exchangers to be used in wood dryers and compare the materials used and simulate heat transfer on cross-flow flat plate heat exchangers using Computational Fluid Dynamic simulations. The results showed that there was a variation in the temperature out of dry air and gas on the flat plate heat exchanger and copper material had a better heat delivery by reaching the temperature out of dry air and gas on the flat plate type heat exchanger of successive cross flow and.   overall heat transfer coefficient value and the effectiveness value of the heat exchanger of the heat transfer characteristics that occur with the cross-flow flat plate type heat exchanger in copper material of 251.74725 W/K and 0.25.


1989 ◽  
Vol 12 (1) ◽  
pp. 288-294 ◽  
Author(s):  
Udo Brockmeier ◽  
Martin Fiebig ◽  
Thomas Güntermann ◽  
Nimai K. Mitra

Author(s):  
Ece Özkaya ◽  
Selin Aradag ◽  
Sadik Kakac

In this study, three-dimensional computational fluid dynamics (CFD) analyses are performed to assess the thermal-hydraulic characteristics of a commercial Gasketed Plate Heat Exchangers (GPHEx) with 30 degrees of chevron angle (Plate1). The results of CFD analyses are compared with a computer program (ETU HEX) previously developed based on experimental results. Heat transfer plate is scanned using photogrammetric scan method to model GPHEx. CFD model is created as two separate flow zones, one for each of hot and cold domains with a virtual plate. Mass flow inlet and pressure outlet boundary conditions are applied. The working fluid is water. Temperature and pressure distributions are obtained for a Reynolds number range of 700–3400 and total temperature difference and pressure drop values are compared with ETU HEX. A new plate (Plate2) with corrugation pattern using smaller amplitude is designed and analyzed. The thermal properties are in good agreement with experimental data for the commercial plate. For the new plate, the decrease of the amplitude leads to a smaller enlargement factor which causes a low heat transfer rate while the pressure drop remains almost constant.


Sign in / Sign up

Export Citation Format

Share Document