scholarly journals Experimental Study on the Damage of Granite by Acoustic Emission after Cyclic Heating and Cooling with Circulating Water

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 101 ◽  
Author(s):  
Dong Zhu ◽  
Hongwen Jing ◽  
Qian Yin ◽  
Guansheng Han

Hot dry rock is developed by injecting cold water into high-temperature rock mass. At the same time, cold water is heated in contact with the rock mass. With the continuous influx of cold water, the surrounding rock will undergo a rapid cooling process, which results in several cycles of heating and cooling. However, there is little research on the influence of cycles of heating and cooling with circulating water on the mechanical properties of rock, which is of great importance to the stability of rock mass engineering in the process of energy development. In this paper, the effects of cyclic heating and cooling with circulating water on the damage of granite are studied using uniaxial compressive, Brazilian and acoustic emission (AE) tests. The results show that heat treatment temperature and number of cycles have important effects on the mechanical properties of granite as follows: (1) at the same treatment temperature, an increase in the number of cycles means that the distribution of physical and mechanical parameters of the granite show an almost exponential downward trend. The uniaxial compression of granite results in its transformation from brittle to plastic, and the failure mode changes from slipping of the shear surface to plastic failure. With increased cycles of heating and cooling with circulating water, the tensile strength of granite also decreases; temperature has an obvious influence on physical and mechanical parameters, cracking of samples, and plays a controlling role in the failure mode of samples. In addition, (2) at the same temperature, the heating and cooling numbers N have a significant influence on the AE distribution characteristics of the sample under uniaxial compression and the number of AE collisions, and the cumulative number of AE decreases with the increase of N. (3) The concepts of mechanical damage and high-temperature and cold-water shock damage during uniaxial compression of samples were proposed based on AE, and the damage equations were established respectively. The curve equations of damage value (D) and cycle numbers N after thermal shock damage of high temperature and cold water were overlaid. The cracking mechanism of high-temperature and cold water impact on granite was analyzed, and the thermal shock stress equation of high temperature and water cooling was established.

2016 ◽  
Vol 870 ◽  
pp. 545-549 ◽  
Author(s):  
Y.S. Bakhracheva ◽  
A.V. Vasilyev ◽  
T.N. Petikova

It is shown that cyclic heating and cooling considerably accelerate kinetics of process of the steel chemical thermal processing. Laws of formation of the strengthened layers are considered at thermocyclic nitrocementation of the steel 20Kh. Production tests of machine parts after the chemical thermal and chemical-thermocyclic processing were performed. The structure, phase composition and intensity of wear process of a blanket depending on a number of cycles are studied.


Author(s):  
N. S. Tsarev ◽  
V. I. Aksenov ◽  
I. I. Nichkova

To neutralize the waste pickling solutions and rinsing water, resulting from cleaning metal products s surface of rust by acids solutions, lime is used. Being cheap, this method of sewage neutralization has considerable drawbacks. Forming in the technological pipes strong gypsum depositions and low specific productivity of the equipment for sediment dewatering are most significant of them. Characteristic of aggressive industrial sewage, formed at pickling of ferrous metals presented. Methods of elimination of drawbacks of industrial sewage neutralization by lime considered, including stabilization of neutralized industrial sewage and control of properties of the sediment formed. It was noted, that stability of the circulating water can be provided by accelerating of crystallization of the forming gypsum sediments by introducing in it fine priming powder and heating the neutralized water up to 65-70 °С followed by thermal softening of a part of circulating water, removed out of the circulating system. It was shown, that the heating of the water and the ongoing changes of the composition and properties of the sediment result in decrease of filtration resistance 2-3 folds, increase of deposition speed 3-4 folds and decrease the sediment volume 1.5-2 folds comparing with lime neutralization in cold water. Calculated dozes of lime at the heating were taken the same as at the regular lime neutralization. Elimination of the circulating water oversaturation by bi-water gypsum can be reached also by addition into the water of powder-like gypsum pulp - priming powder for microcrystals of the gypsum, followed by aeration during 30-40 min. This method was tested under industrial conditions. Technological properties of the forming sediment can be improved by sediment treatment by flocculants and preliminary heating of the neutralized water up to 65-70 °С. Control of technological properties of the sediment is done by addition of flocculants and heating of the neutralized water. Recommendations for improving operation of the neutralization facilities presented with indicating particular technological parameters of the equipment operation for sewage and sediment treatment. 


2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Alloy Digest ◽  
1957 ◽  
Vol 6 (11) ◽  

Abstract Type HW is a nickel-base alloy containing chromium and iron. It is austenitic, non-magnetic, and has exceptionally high resistance to corrosion, cyclic heating, and oxidation. It is of the 60 Ni-12Cr type alloy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Ni-37. Producer or source: Stainless steel foundries. Revised as Alloy Digest Ni-449, April 1994.


Alloy Digest ◽  
1975 ◽  
Vol 24 (8) ◽  

Abstract POTOMAC is a general-purpose, low-carbon, chromium-molybdenum-tungsten hot-work steel. It has excellent resistance to shock and heat checking after repeated heating and cooling. Potomac is suitable for hot-work applications involving severe conditions of shock and sudden temperature changes. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-290. Producer or source: Allegheny Ludlum Corporation.


Author(s):  
A. Paulsen ◽  
H. Dumlu ◽  
D. Piorunek ◽  
D. Langenkämper ◽  
J. Frenzel ◽  
...  

AbstractTi75Ta25 high-temperature shape memory alloys exhibit a number of features which make it difficult to use them as spring actuators. These include the high melting point of Ta (close to 3000 °C), the affinity of Ti to oxygen which leads to the formation of brittle α-case layers and the tendency to precipitate the ω-phase, which suppresses the martensitic transformation. The present work represents a case study which shows how one can overcome these issues and manufacture high quality Ti75Ta25 tensile spring actuators. The work focusses on processing (arc melting, arc welding, wire drawing, surface treatments and actuator spring geometry setting) and on cyclic actuator testing. It is shown how one can minimize the detrimental effect of ω-phase formation and ensure stable high-temperature actuation by fast heating and cooling and by intermediate rejuvenation anneals. The results are discussed on the basis of fundamental Ti–Ta metallurgy and in the light of Ni–Ti spring actuator performance.


2021 ◽  
Vol 189 ◽  
pp. 116731
Author(s):  
Marcel Ulrich Ahrens ◽  
Sverre Stefanussen Foslie ◽  
Ole Marius Moen ◽  
Michael Bantle ◽  
Trygve Magne Eikevik

2015 ◽  
Vol 658 ◽  
pp. 14-18
Author(s):  
Tanaporn Rojhirunsakool ◽  
Duangkwan Thongpian ◽  
Nutthita Chuankrerkkul ◽  
Panyawat Wangyao

Nickel-base superalloys have been used as high temperature materials in land-base gas turbine application. When subjected to long term, high temperature service, large crack propagation was observed. Typical refurbishment method of these turbines is carried out by using TIG welding followed by post-weld standard heat treatment. However, new crack initiation is found in the heat-affected zone after TIG welding. Pre-weld heat treatment has been discovered to improves final γ + γ’ microstructure. This study focuses on the effect of pre-weld heat treatment temperature on final γ + γ’ microstructure. Seven different conditions of pre-weld heat treatment temperature were investigated. Scanning electron microscopy studies were carried out after pre-weld and post-weld heat treatments to compare the γ + γ’ microstructure and capture microcracks. The best pre-weld heat treatment temperature produces uniform distribution of finely dispersed γ’ precipitates in the γ matrix without post-weld crack.


Sign in / Sign up

Export Citation Format

Share Document