scholarly journals Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 798 ◽  
Author(s):  
Tembely ◽  
Vadillo ◽  
Soucemarianadin ◽  
Dolatabadi

This paper presents a physically based numerical model to simulate droplet impact, spreading, and eventually rebound of a viscoelastic droplet. The simulations were based on the volume of fluid (VOF) method in conjunction with a dynamic contact model accounting for the hysteresis between droplet and substrate. The non‐Newtonian nature of the fluid was handled using FENE‐CR constitutive equations which model a polymeric fluid based on its rheological properties. A comparative simulation was carried out between a Newtonian solvent and a viscoelastic dilute polymer solution droplet. Droplet impact analysis was performed on hydrophilic and superhydrophobic substrates, both exhibiting contact angle hysteresis. The effect of substrates’ wettability on droplet impact dynamics was determined the evolution of the spreading diameter. While the kinematic phase of droplet spreading seemed to be independent of both the substrate and fluid rheology, the recoiling phase seemed highly influenced by those operating parameters. Furthermore, our results implied a critical polymer concentration in solution, between 0.25 and 2.5% of polystyrene (PS), above which droplet rebound from a superhydrophobic substrate could be curbed. The present model could be of particular interest for optimized 2D/3D printing of complex fluids.

Author(s):  
Fangjun Hong ◽  
Ping Cheng ◽  
Zhen Sun ◽  
Huiying Wu

In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.


Author(s):  
Moussa Tembely

In this paper, a numerical modeling of the impact, spreading, and eventually rebound of a viscoelastic droplet is reported. The numerical model is based on the volume of fluid (VOF) method coupled with the FENE-CR constitutive equations, and accounts for both the surface tension and the substrate wettability. The FENE-CR constitutive equations are used to model the polymer solution, while taking advantage of its rheological characterization. The comparison is performed between droplets of Newtonian solvent and a monodisperse polymer solution. The droplet impact on both hydrophilic and superhydrophobic substrate is analyzed through a detailed analysis of the spreading diameter evolution. It is found that while the droplet kinematic phase seems independent of the substrate and fluids properties, the recoiling phase is highly related to all of them. In addition, the model infers a critical polymer concentration above which the droplet rebound from a superhydrophobic substrate is suppressed. The simulation is of particular interest to ink-jet processing, and demonstrates the capability of the model to handle complex non-Newtonian droplet dynamics.


Author(s):  
Masayuki Kaneda ◽  
Kentarou Hyakuta ◽  
Hirotaka Ishizuka ◽  
Jun Fukai

The internal flow of an evaporating polymer solution droplet on a substrate is experimentally studied. The flow visualization is carried out. The effect of the initial polymer concentration is further investigated. A polystyrene-acetophenone (PS-Ap) and a polystyrene-anisole (PS-Ani) solution are employed as the droplet. A nylon powder is mixed with the droplet for the visualization by a YAG-laser sheet light. The droplet evaporates after the settlement on the substrate. Without the polymer dissolved in the solvent, complicated flow is observed in both droplets. For the cases with dissolved polymer, the flow pattern is rectified. In the PS-Ap droplet, the source flow is observed for the initial solute mass fraction c0 = 0.005 – 0.20. This convection becomes strong as c0 increases. The mechanism of the flow inside the PS-Ap droplet can be understood by the combination of the natural convection and Marangoni convection due to the differences of the temperature and the solute concentration. As for the PS-Ani droplet, the evaporation process and the flow pattern are affected by c0. For the dilute solution (0 < c0 < 0.03), the contact angle decreases during the contact line receding. The observed flow pattern becomes similar to that in the PS-Ap droplet. At c0 = 0.08 – 0.2, the decline of the contact angle is remarkable and the direction of the internal flow becomes inverse. This flow mechanism cannot be clarified, but it may have the relations with the decreasing contact angle.


1981 ◽  
Vol 103 (4) ◽  
pp. 491-496 ◽  
Author(s):  
J. T. Kuo ◽  
L. S. G. Kovasznay

A novel flow configuration was explored for the study of the behavior of drag reducing polymers. A screw pump consisting of a smooth cylinder and a concentrically placed screw was used to create a strongly three-dimensional but essentially laminar flow. In the first phase of the study, the static pressure head developed by the screw pump was measured as a function of polymer concentration (polyox 10 to 100 ppm in water). A large increase of the developed head was observed that behaved in an analogous manner to drag reduction as far as concentration and straining of the polymer solution was concerned. In the second phase of the study, a new apparatus was constructed and the additional parameter of a superimposed through flow was included and the degree of failure of the superposition principle was established. Sensitivity of the phenomenon to chemicals like HCl, HNO3, and NaOH in the polymer solution was also studied. When the effect of these chemicals on the polymer solution flow behavior was presented in terms of the pH value of the polymer solution, it showed a similar trend to those observed in drag reduction.


2012 ◽  
Vol 535-537 ◽  
pp. 1146-1150 ◽  
Author(s):  
Amit Jadhav ◽  
Li Jing Wang ◽  
Carl Lawrence ◽  
Rajiv Padhye

Electrospraying is inexpensive and an effective way to produce submicron range coating. Spray Angle and Jet Length are important characteristics that affect coating quality while polymer solution subjected to electrospraying. It was of interest to determine the effect of the process parameters on Jet Length. In this paper, an attempt was made to apply the electrospraying concept for coating textile surfaces. Series of experiments were carried out employing different settings of process parameters such as voltage, nozzle-collector distance and polymer concentration. Thermoplastic polyurethane dissolved in tetrahydrofluran was used as a solution. The results provide some insight into the effect of electrospraying process parameters on Jet Length


Author(s):  
Zhang Shi ◽  
Yi Zhang ◽  
Mingchao Liu ◽  
Dorian A.H. Hanaor ◽  
Yixiang Gan

2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Pan-Sang Kang ◽  
Jong-Se Lim ◽  
Chun Huh

Abstract The viscosity of injection fluid is a critical parameter that should be considered for the design and evaluation of polymer flood, which is an effective and popular technique for enhanced oil recovery (EOR). It is known that the shear-thinning behavior of EOR polymer solutions is affected by temperature. In this study, temperature dependence (25–70 °C) of the viscosity of a partially hydrolyzed polyacrylamide solution, the most widely used EOR polymer for oil field applications, was measured under varying conditions of the polymer solution (polymer concentration: 500–3000 ppm, NaCl salinity: 1000–10,000 ppm). Under all conditions of the polymer solution, it was observed that the viscosity decreases with increasing temperature. The degree of temperature dependence, however, varies with the conditions of the polymer solution. Martin model and Lee correlations were used to estimate the dependence of the viscosity of the polymer solution on the polymer concentration and salinity. In this study, we proposed a new empirical model to better elucidate the temperature dependence of intrinsic viscosity. Analysis of the measured viscosities shows that the accuracy of the proposed temperature model is higher than that of the existing temperature model.


Sign in / Sign up

Export Citation Format

Share Document