scholarly journals The Demulsification Properties of Cationic Hyperbranched Polyamidoamines for Polymer Flooding Emulsions and Microemulsions

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Yangang Bi ◽  
Zhi Tan ◽  
Liang Wang ◽  
Wusong Li ◽  
Congcong Liu ◽  
...  

Polymer flooding emulsions and microemulsions caused by tertiary oil recovery technologies are harmful to the environment due to their excellent stability. Two cationic hyperbranched polyamidoamines (H-PAMAM), named as H-PAMAM-HA and H-PAMAM-ETA, were obtained by changing the terminal denotation agents to H-PAMAM, which was characterized by 1H NMR, FT-IR, and amine possession, thereby confirmed the modification. Samples (300 mg/L) were added to the polymer flooding emulsion (1500 mg/L oil concentration) at 30 °C for 30 min and the H-PAMAM-HA and H-PAMAM-ETA were shown to perform at 88% and 91% deoil efficiency. Additionally, the increased settling time and the raised temperature enhanced performance. For example, an oil removal ratio of 97.7% was observed after dealing with the emulsion for 30 min at 60 °C, while 98.5% deoil efficiency was obtained after 90 min at 45 °C for the 300 mg/L H-PAMAM-ETA. To determine the differences when dealing with the emulsion, the interfacial tension, ζ potential, and turbidity measurements were fully estimated. Moreover, diametrically different demulsification mechanisms were found when the samples were utilized to treat the microemulsion. The modified demulsifiers showed excellent demulsification efficiency via their obvious electroneutralization and bridge functions, while the H-PAMAM appeared to enhance the stability of the microemulsion.




2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Changxin Shi ◽  
Zhiping Li ◽  
Hong Zhang ◽  
Yajuan Chen ◽  
Minglong Zhang ◽  
...  

Guerbet amine-oxide was synthesized by using Guerbet acid, N,N′-diethyl-1,3-propanediamine and hydrogen peroxide. Its structure was confirmed by FT-IR spectra and mass spectra. The critical micelle concentration (CMC) and the interfacial tension between the crude oil and water were measured. The results showed that the CMC of the Guerbet amine-oxide is 2.14 × 10−5 mol/L and the interfacial tension could be lowered to ultralow levels. The core flood test showed that the surfactant and polymer binary system could increase oil recovery by 24.7% above the water flood.



2013 ◽  
Vol 448-453 ◽  
pp. 3046-3049
Author(s):  
Run Tong Wu ◽  
Kao Ping Song ◽  
Er Long Yang

As a mature tertiary oil recovery technology, polymer flooding has been widely used in domestic oilfields, especially in Daqing oilfield, its polymer flooding production has reached more than 25% of total output. Therefore, there are important theoretical significance and application value to do further research of polymer flooding mechanism and use to guide the production. In order to understand the mechanism of polymer flooding, polymer flooding oil film based on the decrease of residual oil range is the biggest, established the dynamics model of polymer solution displacement of rock wall oil film under the condition of tensile and shear flow. In addition, this paper discussed the effect of the oil film thickness, tensile index, dimensionless tensile coefficient as well as the power-law coefficient on oil film start, and pointed out macroeconomic conditions which is the oil film start required.



2014 ◽  
Vol 36 (6) ◽  
pp. 811-820 ◽  
Author(s):  
Xiaosen Shang ◽  
Yunhong Ding ◽  
Wenzheng Chen ◽  
Yingrui Bai ◽  
Dongming Chen


2018 ◽  
Vol 10 (3) ◽  
pp. 141
Author(s):  
Chitra Ria Ariska ◽  
Suryo Purwono ◽  
Bardi Murachman

SLS modification using epoxyde from oleat acid and hydrogen peroxyde to improve the quality of surfactant in EORSurfactant is one of the compounds used in Enhanced Oil Recovery (EOR) which function is to enhance the oil production. One of the surfactants widely used is Sodium Ligno Sulfonat (SLS) due to its high degradability. However the modification with another compound is still needed in orderto decrease its Inter Facial Tension (IFT) until reach the ultralow IFT(±10-3 mN/m). One of the chemical compounds used to modify the surfactant is epoxidebecause it has reactive oxirane ring. The addition of oleic epoxide will increase solubility of surfactant in oil so it brings more stable microemulsion. Epoxidation of oleic acid was carried out with peroxyacetic acid that was generated insitu from aqueous hydrogen peroxide and glacial acetic acid. The modification of SLS was then done by adding the epoxide in various conversion resulted from epoxidation. The experiment was investigated at temperature, ratio of epoxide to SLS and reaction time of 70oC, 1:2 and 1 hour, respectively. The modified product were then measured their IFTat temperature of 30-60oC and tested the stability of microemulsion based on time of formation of microemulsion up back in its original state. The present study revealed that epoxides has capability to decrease IFT. The results of experiment shows that the lowest IFT is modification of epoxide with the conversion of 10% as 3,7 x10-3 mN/m and has most excellent stability with time 113 minutes.Keywords: epoxide, Sodium Ligno Sulfonat (SLS), microemulsion, surfactant, EOR AbstrakSurfaktan adalah salah satu bahan kimia yang digunakan dalam Enhanced Oil Recovery (EOR) untuk meningkatkan produksi minyak. Salah satu jenis surfaktan yang banyak digunakan adalah Sodium Ligno Sulfonat (SLS) karena mudah didegradasi limbahnya. Namun modifikasi dengan senyawa lain masih perlu dilakukan untuk menurunkan tegangan antarmuka atau Inter Facial Tension (IFT) hingga mencapai ultralow IFT (±10-3 mN/m). Salah satu bahan kimia yang dapat digunakan untuk modifikasi surfaktan adalah epoksida karena memiliki cincin oksiren yang reaktif. Penambahan epoksi oleat ini akan meningkatkan kelarutan surfaktan dalam minyak sehingga didapatkan mikroemulsi yang lebih stabil. Modifikasi SLS dibuat dengan menambahkan epoksida dengan variasi konversi yang dihasilkan dari proses epoksidasi. Percobaan dilakukan pada temperatur 70oC, rasio perbandingan epoksida:SLS adalah 1:2 dengan waktu reaksi 1 jam. IFT produk modifikasi diukur pada temperatur 30-60oC dan diuji kestabilan mikroemulsinya berdasarkan waktu pembentukan mikroemulsi sampai kembali pada keadaan semula. Dari penelitian didapatkan bahwa epoksida dapat menurunkan IFT. IFT paling rendah dihasilkan dari modifikasi epoksida dengan konversi 10%, yaitu 3,7 x10-3 mN/m dan memiliki kestabilan paling baik dengan waktu emulsi 113 menit.Kata kunci: epoksida, Sodium Ligno Sulfonat (SLS), mikroemulsi, surfaktan, EOR



1971 ◽  
Vol 1971 (1) ◽  
pp. 309-317 ◽  
Author(s):  
J.P. Oxenham

ABSTRACT Analyses and experimentation have indicated that the maximum recovery rate of an oleophilic belt oil recovery system is generally limited by the rate at which oil may be transferred to the belt surface and interior. The rate of absorption of oil by an oleophilic belt increases with increasing specific surface and permeability of the belt material increasing slick depth, decreasing oil viscosity, and decreasing interfacial tension between the oil and belt material. In operations with high viscosity oils and high belt speeds significant quantities of oil may be withdrawn on the belt's outer surface. The oil scrubber's performance is not detrimentally affected by the presence of waves, nor by the presence of solid materials, emulsions, or “rag” in limited quantities. The stability of the belt is a primary concern for operations in the presence of transverse currents.



Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 562 ◽  
Author(s):  
Shuang Liang ◽  
Yikun Liu ◽  
Shaoquan Hu ◽  
Anqi Shen ◽  
Qiannan Yu ◽  
...  

With the rapid growth of energy consumption, enhanced oil recovery (EOR) methods are continually emerging, the most effective and widely used was polymer flooding. However, the shortcomings were gradually exposed. A novel decorated polyacrylamide might be a better alternative than polymer. In this work, the molecular structure and the properties reflecting the viscosity of decorated polyacrylamide, interfacial tension, and emulsification were examined. In order to better understand the interactions between decorated polyacrylamide and oil as well as the displacement mechanism, the displacement experiment were conducted in the etched-glass microscale model. Moreover, the coreflooding comparison experiments between decorated polyacrylamide and polymer were performed to investigate the displacement effect. The statistical analysis showed that the decorated polyacrylamide has excellent characteristics of salt tolerance, viscosity stability, and viscosification like polymer. Besides, the ability to reduce the interfacial tension in order 10−1 and emulsification, which were more similar to surfactant. Therefore, the decorated polyacrylamide was a multifunctional polymer. The displacement process captured by camera illustrated that the decorated polyacrylamide flooded oil mainly by means of ‘pull and drag’, ‘entrainment’, and ‘bridging’, based on the mechanism of viscosifying, emulsifying, and viscoelasticity. The results of the coreflooding experiment indicated that the recovery of decorated polyacrylamide can be improved by approximately 11–16% after water flooding when the concentration was more than 800 mg/L, which was higher than that of conventional polymer flooding. It should be mentioned that a new injection mode of ‘concentration reduction multi-slug’ was first proposed, and it obtained an exciting result of increasing oil production and decreasing water-cut, the effect of conformance control was more significant.



1982 ◽  
Vol 22 (04) ◽  
pp. 472-480 ◽  
Author(s):  
S.L. Enedy ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract This investigation focused on developing an efficient chemical flooding process by use of dilute surfactant/polymer slugs. The competing roles of interfacial tension (IFT) and equivalent weight (EW) of the surfactant used, as well as the effect of different types of preflushes on tertiary oil recovery, were studied. Volume of residual oil recovered per gram of surfactant used was examined as a function of these variables and slug size. Tertiary oil recovery increased with an increase in the dilute surfactant slug size and buffer viscosity. However, low IFT does not ensure high oil recovery. An increase in surfactant EW used actually can lead to a decrease in oil recovery. Tertiary oil recovery was also sensitive to preflush type. Reasons for the observed behavior are examined in relation to the surfactant properties as well as to adsorption and retention. Introduction Two approaches are being used in development of surfactant /polymer-type chemical floods:a small-PV slug of high surfactant concentration, ora large-PV slug of low surfactant concentration. This study deals with the latter-i.e., dilute aqueous slugs (with polymer added in many cases) containing less than or equal 2.0 wt% sulfonates and about 0. 1 wt% crude oil. Because the dilute slug contains little of the dispersed phase, an aqueous surfactant slug usually is unable to displace the oil miscibly; however, residual brine is miscible with the slug if the inorganic salt concentration is not excessive. The dilute, aqueous petroleum sulfonate slug lowers the oil/water IFT. overcoming capillary forces. This process commonly is referred to as locally immiscible oil displacement. Objectives The objective of this work was to develop an efficient dilute surfactant/polymer slug for the Bradford crude with a variety of sulfonate combinations. Effects of varying the slug characteristics such as equivalent weight, IFT, salt concentration, etc. on tertiary oil recovery were examined. Materials and Experimental Details The petroleum sulfonates and the dilute slugs used in this study are listed in Tables 1 and 2, respectively. The crude oil tested was Bradford crude 144 degrees API (0.003 g/cm3), 4 cp (0.004 Pa.s)]. The polymer solutions were prefiltered and driven by brines of various concentrations (0.02, 1.0, and 2.0% NACl). In many cases, the polymer was added to the slug. Conventional coreflood equipment described in Ref. 3 was used. Berea sandstone cores (unfired) 2 in, (5 cm) in diameter and 4 ft (1.3 m) in length were used for all tests, with a new core for each test. Porosity ranged from 19.3 to 21.0%, permeability averaged 203 md, and the waterflood residual oil saturation averaged 33.1%. IFT's were measured by the spinning drop method. Viscosities were measured with a Brookfield viscosimeter and are reported here for 6 rpm (0.1 rev/s). The dilute slugs containing polymer exhibited non-Newtonian behavior. Without polymer the behavior was Newtonian. Sulfonate concentration in the oleic phase was determined by an infrared spectrophotometer, while the concentration in the aqueous phase was measured by ultraviolet (UV) absorbance analysis. Discussion of Results Slug development in this investigation was an evolutionary process. Dilute slugs were developed and core tested in a sequential manner (Table 2). Slugs 100 through 200 yielded insignificant ternary oil recoveries (largely because of excessive adsorption and retention), but the results helped determine improvements in slug compositions and in the overall chemical flood. This paper gives results for the more efficient slugs only. SPEJ P. 472^



Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3045 ◽  
Author(s):  
Jun Pu ◽  
Xuejie Qin ◽  
Feifei Gou ◽  
Wenchao Fang ◽  
Fengjie Peng ◽  
...  

After primary and secondary oil recovery, CO2-enhanced oil recovery (EOR) has become one of the most mentioned technologies in tertiary oil recovery. Since the oil is confined in an unconventional reservoir, the interfacial properties of CO2 and oil are different from in conventional reservoirs, and play a key role in CO2 EOR. In this study, molecular dynamics simulations are performed to investigate the interfacial properties, such as interfacial tension, minimum miscibility pressure (MMP), and CO2 solubility. The vanishing interfacial tension method is used to get the MMP (~10.8 MPa at 343.15 K) which is in agreement with the reported experimental data, quantitatively. Meanwhile, the diffusion coefficients of CO2 and n-octane under different pressures are calculated to show that the diffusion is mainly improved at the interface. Furthermore, the displacement efficiency and molecular orientation in α-quartz nanoslit under different CO2 injection ratios have been evaluated. After CO2 injection, the adsorbed n-octane molecules are found to be displaced from surface by the injected CO2 and, then, the orientation of n-octane becomes more random, which indicates that and CO2 can enhance the oil recovery and weaken the interaction between n-octane and α-quartz surface. The injection ratio of CO2 to n-octane is around 3:1, which could achieve the optimal displacement efficiency.





Sign in / Sign up

Export Citation Format

Share Document