scholarly journals Optimization of a Steam Reforming Plant Modeled with Artificial Neural Networks

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1923
Author(s):  
Eduardo G. Pardo ◽  
Jaime Blanco-Linares ◽  
David Velázquez ◽  
Francisco Serradilla

The objective of this research is to improve the hydrogen production and total profit of a real Steam Reforming plant. Given the impossibility of tuning the real factory to optimize its operation, we propose modelling the plant using Artificial Neural Networks (ANNs). Particularly, we combine a set of independent ANNs into a single model. Each ANN uses different sets of inputs depending on the physical processes simulated. The model is then optimized as a black-box system using metaheuristics (Genetic and Memetic Algorithms). We demonstrate that the proposed ANN model presents a high correlation between the real output and the predicted one. Additionally, the performance of the proposed optimization techniques has been validated by the engineers of the plant, who reported a significant increase in the benefit that was obtained after optimization. Furthermore, this approach has been favorably compared with the results that were provided by a general black-box solver. All methods were tested over real data that were provided by the factory.

2020 ◽  
Vol 48 ◽  
Author(s):  
Luiz Gabriel Barreto De Almeida ◽  
Éder Barbosa De Oliveira ◽  
Thales Quedi Furian ◽  
Karen Apellanis Borges ◽  
Daniela Tonini da Rocha ◽  
...  

Background: Eggs have acquired a greater importance as an inexpensive and high-quality protein. The Brazilian egg industry has been characterized by a constant production expansion in the last decade, increasing the number of housed animals and facilitating the spread of many diseases. In order to reduce the sanitary and financial risks, decisions regard­ing the production and the health status of the flock must be made based on objective criteria. The use of Artificial Neural Networks (ANN) is a valuable tool to reduce the subjectivity of the analysis. In this context, the aim of this study was at validating the ANNs as viable tool to be employed in the prediction and management of commercial egg production flocks.Materials, Methods & Results: Data from 42 flocks of commercial layer hens from a poultry company were selected. The data refer to the period between 2010 and 2018 and it represents a total of 600,000 layers. Six parameters were selected as “output” data (number of dead birds per week, feed consumption, number of eggs, weekly weight, weekly egg produc­tion and flock uniformity) and a total of 13 parameters were selected as “input” data (flock age, flock identification, total hens in the flock, weekly weight, flock uniformity, lineage, weekly mortality, absolute number of dead birds, eggs/hen, weekly egg production, feed consumption, flock location, creation phase). ANNs were elaborated by software programs NeuroShell Predictor and NeuroShell Classifier. The programs identified input variables for the assembly of the networks seeking the prediction of the variables called outgoing that are subsequently validated. This validation goes through the comparison between the predictions and the real data present in the database that was the basis for the work. Validation of each ANN is expressed by the specific statistical parameters multiple determination (R2) and Mean Squared Error (MSE). For instance, R2 above 0.70 expresses a good validation. ANN developed for the output variable “number of dead birds per week” presented R2= 0.9533 and MSE= 256.88. For “feed consumption”, the results were R2= 0.7382 and MSE= 274.56. For “number of eggs (eggs/hen)”, the results were R2= 0.9901 and MSE= 172.26. For “weekly weight”, R2= 0.9712 and MSE= 11154.41. For “weekly egg production”, R2= 0.8015 and MSE= 72.60. For “flock uniformity”, R2= -2.9955 and MSE= 431.82.Discussion: From the six ANN designed in this study, in five it was possible to validate the predictions by comparing predictions with the real data. In one output parameter (“flock uniformity”), it was not possible to have adequate validation due to insufficient data in our database. For “number of dead birds per week”, “feed consumption”, “weekly weight” and “uniformity”, the most important variable was “flock age” (27.5%, 52.5%, 55.2% and 37.9%, respectively). For “number of eggs (eggs/hen)”, “uniformity” (52.1%) was the most relevant variable for prediction. For “weekly egg production”, “flock age” and “number of eggs (eggs/hen)” were the most important zootechnical parameters, both with a relative contribution of 38.2%. The results showed that even with the use of a robust tool such as ANNs, it is necessary to have well-noted and clear information that expresses the reality of the flocks. In any case, the results presented allow us to state that ANNs are capable for the management of data generated in a commercial egg production facility. The process of evaluation of these data would be improved if ANNs were routinely used by the professionals linked to this activity.


2018 ◽  
Vol 121 ◽  
pp. 203-210
Author(s):  
Michał Kozłowski ◽  
Jerzy Manerowski

The article presents the preliminary results of research on the possibility of using artificial neural networks for modelling the consequences of continuity incidents in the operation of the airport. The real data and the JETNET 2.1. software were used to carry out the research. The obtained results were analyzed and discussed, in the context of a defined problematic issue, leading to the conclusions of purposefulness and practical possibilities for using artificial neural networks model to support the decision-making processes of management of airport continuity incident.


2014 ◽  
Vol 69 (6) ◽  
pp. 1326-1333 ◽  
Author(s):  
S. R. Mounce ◽  
W. Shepherd ◽  
G. Sailor ◽  
J. Shucksmith ◽  
A. J. Saul

Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that provide data for these assets. This paper presents research into the prediction of the hydraulic performance of CSOs using artificial neural networks (ANN) as an alternative to hydraulic models. Previous work has explored using an ANN model for the prediction of chamber depth using time series for depth and rain gauge data. Rainfall intensity data that can be provided by rainfall radar devices can be used to improve on this approach. Results are presented using real data from a CSO for a catchment in the North of England, UK. An ANN model trained with the pseudo-inverse rule was shown to be capable of predicting CSO depth with less than 5% error for predictions more than 1 hour ahead for unseen data. Such predictive approaches are important to the future management of combined sewer systems.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1070
Author(s):  
Abdul Gani Abdul Jameel

The self-learning capabilities of artificial neural networks (ANNs) from large datasets have led to their deployment in the prediction of various physical and chemical phenomena. In the present work, an ANN model was developed to predict the yield sooting index (YSI) of oxygenated fuels using the functional group approach. A total of 265 pure compounds comprising six chemical classes, namely paraffins (n and iso), olefins, naphthenes, aromatics, alcohols, and ethers, were dis-assembled into eight constituent functional groups, namely paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic –CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups, alcoholic OH groups, and ether O groups. These functional groups, in addition to molecular weight and branching index, were used as inputs to develop the ANN model. A neural network with two hidden layers was used to train the model using the Levenberg–Marquardt (ML) training algorithm. The developed model was tested with 15% of the random unseen data points. A regression coefficient (R2) of 0.99 was obtained when the experimental values were compared with the predicted YSI values from the test set. An average error of 3.4% was obtained, which is less than the experimental uncertainty associated with most reported YSI measurements. The developed model can be used for YSI prediction of hydrocarbon fuels containing alcohol and ether-based oxygenates as additives with a high degree of accuracy.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2332
Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto

Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


Author(s):  
Adnan Rachmat Anom Besari ◽  
Ruzaidi Zamri ◽  
Md. Dan Md. Palil ◽  
Anton Satria Prabuwono

Polishing is a highly skilled manufacturing process with a lot of constraints and interaction with environment. In general, the purpose of polishing is to get the uniform surface roughness distributed evenly throughout part’s surface. In order to reduce the polishing time and cope with the shortage of skilled workers, robotic polishing technology has been investigated. This paper studies about vision system to measure surface defects that have been characterized to some level of surface roughness. The surface defects data have learned using artificial neural networks to give a decision in order to move the actuator of arm robot. Force and rotation time have chosen as output parameters of artificial neural networks. Results shows that although there is a considerable change in both parameter values acquired from vision data compared to real data, it is still possible to obtain surface defects characterization using vision sensor to a certain limit of accuracy. The overall results of this research would encourage further developments in this area to achieve robust computer vision based surface measurement systems for industrial robotic, especially in polishing process.Keywords: polishing robot, vision sensor, surface defects, and artificial neural networks


2019 ◽  
Vol 8 (4) ◽  
pp. 3902-3910

In the field of mobile robotics, path planning is one of the most widely-sought areas of interest due to its nature of complexity, where such issue is also practically evident in the case of mobile robots used for waste disposal purposes. To overcome issues on path planning, researchers have studied various classical and heuristic methods, however, the extent of optimization applicability and accuracy still remain an opportunity for further improvements. This paper presents the exploration of Artificial Neural Networks (ANN) in characterizing the path planning capability of a mobile waste-robot in order to improve navigational accuracy and path tracking time. The author utilized proximity and sound sensors as input vectors, dual H-bridge Direct Current (DC) motors as target vectors, and trained the ANN model using Levenberg-Marquardt (LM) and Scaled Conjugate (SCG) algorithms. Results revealed that LM was significantly more accurate than SCG algorithm in local path planning with Mean Square Error (MSE) values of 1.75966, 2.67946, and 2.04963, and Regression (R) values of 0.995671, 0.991247, and 0.983187 in training, testing, and validation environments, respectively. Furthermore, based on simulation results, LM was also found to be more accurate and faster than SCG with Pearson R correlation coefficients of rx=.975, nx=6, px=0.001 and ry=.987, ny=6, py=0.000 and path tracking time of 8.47s.


Sign in / Sign up

Export Citation Format

Share Document