scholarly journals Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1118
Author(s):  
Egle Sendzikiene ◽  
Migle Santaraite ◽  
Violeta Makareviciene

Rapeseed oil of high acidity, an agricultural industry by-product unsuitable for food, was used as an inexpensive raw material for the production of biodiesel fuel. The use of rapeseed oil that is unsuitable for food and lipase as a catalyst makes the biodiesel production process environmentally friendly. Simultaneous oil extraction and in situ transesterification using diesel as an extraction solvent was investigated to obtain a diesel-biodiesel blend. The diesel and rapeseed oil blend ratio was 9:1 (w/w). The enzymatic production of biodiesel from rapeseed oil with high acidity and methanol using eleven different lipases as biocatalysts was studied. The most effective biocatalyst, lipase—Lipozyme TL IM (Thermomyces lanuginosus), which is suitable for in situ transesterification—was selected, and the conversion of rapeseed oil into fatty acid methyl ester was evaluated. The influence of the amount of methanol and lipase, the reaction temperature and the reaction time were investigated to achieve the highest degree of transesterification. The optimal reaction conditions, when the methanol to oil molar ratio was 5:1, were found to be a reaction time of 5 h, a reaction temperature of 25 °C and a lipase (Lipozyme TL IM) concentration of 5% (based on oil weight). Under these optimal conditions, 99.90% (w/w) of the rapeseed oil was extracted from the seed and transesterified. The degree of transesterification obtained was 98.76% (w/w). Additionally, the glyceride content in the biodiesel fuel was investigated and met the requirements perfectly.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2588 ◽  
Author(s):  
Migle Santaraite ◽  
Egle Sendzikiene ◽  
Violeta Makareviciene ◽  
Kiril Kazancev

In this study, low-quality rapeseed was used as a raw material for biodiesel fuel production. The application of such seeds with an enzyme catalyst is a green approach to producing renewable biodiesel fuel. During the in situ transesterification process, mineral diesel was selected as an extraction solvent for the simultaneous extraction and transesterification of rapeseed oil (RO). This allowed, at the end of the process, for the production of a mixture of mineral diesel and biodiesel fuel. Energy is saved using this process, as the need to extract the oil separately is eliminated and extraction and transesterification take place together in the in situ process. In this study, 11 different lipases were analyzed from which to select the most effective biocatalyst according to the chosen experimental conditions. The most suitable lipase for in situ transesterification was Lipozyme TL IM (Thermomyces lanuginosus). The impact of the temperature and duration of the reaction was investigated along with the concentration of the lipase. A ethanol-to-oil molar ratio of 5:1 was chosen. The optimal reaction conditions were as follows: a reaction duration of 7 h, a reaction temperature of 30 °C and a lipase concentration of 5% (based on oil weight). Under these conditions, 99.92% of oil was extracted from the rapeseed. The degree of oil transesterification acquired was 99.89%. A mineral diesel and rapeseed oil ethyl ester blend of 9:1 (w/w) was produced.



2020 ◽  
Vol 9 (1) ◽  
pp. 113-117
Author(s):  
Mahfud Mahfud ◽  
Ummu Kalsum ◽  
Viqhi Ashwie

Aim of this research are to study and develop research related to the potential of Chlorella sp. into biodiesel with the help of microwaves in-situ transesterification by characterizing parameters such as microwave power (300; 450; 600 W) and reaction time (10; 30; 50 minutes) with catalyst concentration of KOH and molar ratio of microalga : methanol are 2% and 1:12 respectively and optimized by response surface methodology with Face Centered Central Composite Design (FCCCD). The study was carried out by dissolving the catalyst into methanol according to the variable which was then put into a reactor containing microalgae powder in the microwave and turned on according to the predetermined variable. After the reaction process is complete, the mixture is filtered and resuspended with methanol for 10 minutes to remove the remaining FAME and then the obtained filtrate is cooled. Water is added to the filtrate solution to facilitate the separation of hydrophilic components before being separated and pushed apart until 3 layers are formed. Amount of FAMEs in the first layer formed were extracted with n-hexane solution and washed with water and the FAME product obtained was then distilled to remove the remaining n hexane and then weighed. The results indicated that yield increased with increasing reaction time and microwave power with the best conditions of 50 minutes each and 440.53 watts with the highest yield reaching 35.72% (dry basis) through using of KOH catalysts with low concentrations, 2%.©2020. CBIORE-IJRED. All rights reserved



2019 ◽  
Vol 4 (2) ◽  
pp. 106
Author(s):  
Yulia Tri Rahkadima ◽  
Qurrota A'yuni

AbstrakProses produksi biodiesel dari dedak padi dengan memanfaatkan microwave secara in situ telah berhasil dilakukan. Pengaruh jumlah metanol dan waktu reaksi terhadap kandungan FAMEs dalam produk dipelajari dalam penelitian ini. Dedak padi , metanol dan katalis basa berupa NaOH 0.6 w% dimasukkan ke dalam labu alas datar dilengkapi dengan kondensor dan dimasukkan ke dalam reaktor microwave yang telah dimodifikasi.  Produk reaksi yang berupa campuran FAMEs, gliserol, reaktan yang tidak bereaksi dan komponen lainnya kemudian dicuci menggunakan n- heksana dan dilanjut dilakukan proses distilasi. Hasil penelitian menunjukan bahwa dengan menggunakan reaktor microwave, kandungan FAMEs lebih tinggi diperoleh dengan waktu reaksi yang lebih singkat. Gelombang mikro berhasil mempercepat terjadinya reaksi transesterifikasi. Kandungan FAMEs tertinggi yaitu 6.2036 % diperoleh pada waktu reaksi 10 menit, metanol 60 ml dan suhu reaksi 60oC.  Kata kunci : Biodiesel, In situ, Microwave, Dedak padi AbstractThe process of biodiesel production from rice bran using in situ microwaves has been successfully carried out. The effect of the amount of methanol and reaction time on the FAMEs content in the product was studied in this study. Rice bran, methanol and alkaline catalyst in the form of 0.6 w% NaOH are put into a flat bottom flask equipped with a condenser and put into a modified microwave reactor. The reaction product in the form of a mixture of FAMEs, glycerol, unreacted reactants and other components is then washed using n-hexane and contuining with the distillation process. The results showed that by using a microwave reactor, a higher FAMEs content was obtained with a shorter reaction time. Microwaves successfully accelerate the transesterification reaction. The highest FAMEs content of 6.2036% was obtained at a reaction time of 10 minutes, methanol 60 ml and reaction temperature 60oC.Keywords: Biodiesel, In situ, Microwave, Rice bran





2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.



2016 ◽  
Vol 49 ◽  
pp. 212-220 ◽  
Author(s):  
Juanjuan Qi ◽  
Fenfen Zhu ◽  
Xiang Wei ◽  
Luyao Zhao ◽  
Yiqun Xiong ◽  
...  






Sign in / Sign up

Export Citation Format

Share Document