scholarly journals Influence of Processing Parameters on Phenolic Compounds and Color of Cabernet Sauvignon Red Wine Concentrates Obtained by Reverse Osmosis and Nanofiltration

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 89
Author(s):  
Ivana Ivić ◽  
Mirela Kopjar ◽  
Lidija Jakobek ◽  
Vladimir Jukić ◽  
Suzana Korbar ◽  
...  

In this study, Cabernet Sauvignon red wine was subjected to reverse osmosis and nanofiltration processes at four different pressures (25, 35, 45, and 55 bar) and two temperature regimes (with and without cooling). The aim was to obtain concentrates with a higher content of phenolic compounds and antioxidant activity and to determine the influence of two membrane types (Alfa Laval RO98pHt M20 for reverse osmosis and NF M20 for nanofiltration) and different operating conditions on phenolics retention. Total polyphenol, flavonoid, monomeric anthocyanin contents, and antioxidant activity were determined spectrophotometrically. Flavan-3-ols and phenolic acids were analyzed on a high-performance liquid chromatography system and sample colour was measured by chromometer. The results showed that the increase in applied pressure and decrease in retentate temperature were favorable for higher phenolics retention. Retention of individual compounds depended on their chemical structure, membrane properties, membrane fouling, and operating conditions. Both types of membranes proved to be suitable for Cabernet Sauvignon red wine concentration. In all retentates, phenolic compounds content was higher than in the initial wine, but no visible color change (ΔE* < 1) was observed. The highest concentrations of phenolic compounds were detected in retentates obtained at 45 and 55 bar, especially with cooling.

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Ivana Ivić ◽  
Mirela Kopjar ◽  
Ivana Buljeta ◽  
Dubravko Pichler ◽  
Josip Mesić ◽  
...  

Red wine polyphenols are responsible for its colour, astringency, and bitterness. They are known as strong antioxidants that protect the human body from the harmful effects of free radicals and prevent various diseases. Wine phenolics are influenced by viticulture methods and vinification techniques, and therefore, conventionally and ecologically produced wines of the same variety do not have the same phenolic profile. Ecological viticulture avoids the use of chemical adjuvants in vineyards in order to minimise their negative influence on the environment, wine, and human health. The phenolic profile and antioxidant activity of wine can also be influenced by additional treatments, such as concentration by reverse osmosis. The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5, and 5.5 MPa) and two temperature regimes (with and without cooling) on the phenolic profile and antioxidant activity of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The results showed that retention of individual phenolic compounds depended on the applied processing parameters, chemical composition of the initial wine, and chemical properties of a compound. Higher pressure and retentate cooling favoured the retention of total polyphenols, flavonoids, and monomeric anthocyanins, compared to the opposite conditions. The same trend was observed for antioxidant activity.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 874
Author(s):  
Ivana Ivić ◽  
Mirela Kopjar ◽  
Vladimir Jukić ◽  
Martina Bošnjak ◽  
Matea Maglica ◽  
...  

Wine aroma represents one of the main properties that determines the consumer acceptance of the wine. It is different for each wine variety and depends on a large number of various chemical compounds. The aim of this study was to prepare red wine concentrates with enriched aroma compounds and chemical composition. For that purpose, Cabernet Sauvignon red wine variety was concentrated by reverse osmosis (RO) and nanofiltration (NF) processes under different operating conditions. Different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and temperature regimes (with and without cooling) were applied on Alfa Laval LabUnit M20 equipped with six composite polyamide RO98pHt M20 or NF M20 membranes. Higher pressure increased the retention of sugars, SO2, total and volatile acids and ethanol, but the temperature increment had opposite effect. Both membranes were permeable for water, ethanol, acetic acid, 4-ethylphenol and 4-ethylguaiacol and their concentration decreased after wine filtration. RO98pHt membranes retained higher concentrations of total aroma compounds than NF membranes, but both processes, reverse osmosis and nanofiltration, resulted in retentates with different aroma profiles comparing to the initial wine. The retention of individual compounds depended on several factors (chemical structure, stability, polarity, applied processing parameters, etc.).


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Ivana Ivić ◽  
Mirela Kopjar ◽  
Dubravko Pichler ◽  
Ivana Buljeta ◽  
Anita Pichler

The aim of this study was to investigate the influence of different operating conditions (four pressures: 2.5, 3.5, 4.5 and 5.5 MPa; two temperature regimes: with and without cooling) and wine type on phenolic compounds retention during the nanofiltration process of two Cabernet Sauvignon red wines (conventionally and ecologically produced). The nanofiltration process was conducted on Alfa Laval LabUnit M20 with plate module and six NF M20 membranes. In initial wines and obtained retentates, total polyphenol and flavonoid contents, monomeric anthocyanins content, antioxidant activity, individual phenolic compounds and CIELab colour parameters were determined. A loss of total phenolic compounds and decrease in antioxidant activity was observed in all retentates comparing to initial wine. However, retentate cooling and higher pressure increased their retention. Besides processing parameters, individual phenolic compound retention depended on several factors, such as the wine type, chemical properties of compounds and membrane type, and their combinations. Different chemical composition of initial conventional and ecological wine influenced the retention of individual compounds.


1991 ◽  
Vol 24 (9) ◽  
pp. 215-227 ◽  
Author(s):  
B. J. Mariñas

Reverse osmosis technology has a great potential in the field of wastewater reclamation. A reverse osmosis plant includes the following processes: (1) feed water microfiltration and chemical conditioning, (2) membrane treatment, (3) permeate aeration, neutralization and disinfection, and (4) concentrate (liquid residue) treatment and disposal. The performance of reverse osmosis membranes depends on operating conditions and water quality parameters. Permeate productivity and contaminant removals increase with applied hydraulic pressure. Water quality parameters such as concentration, composition and pH also affect contaminant removal efficiencies. For example, the treatment of a simulated wastewater containing 10 mg/L of nitrate with a commercial polyamide-type reverse osmosis membrane resulted in membrane permeates containing approximately 0.05 mg/L of nitrate (or 99.5 percent removal) when sodium chloride was the major dissolved solid present in the feed water, and 1 mg/L (or 90 percent removal) when sodium sulfate was the predominant component. The removals of weak electrolyte contaminants are affected by feed water pH. For example, the removal of boron by a cellulose acetate-type membrane was reported to be greater than 99 percent at a pH of approximately 11, and less than 30 percent at a pH of 7. The practice of pre-treatment processes such as microfiltration and chemical conditioning can minimize performance deterioration resulting from membrane fouling by inorganic precipitates, organic macromolecules and microorganisms (biofouling).


2012 ◽  
Vol 6 (12) ◽  
pp. 3585-3595 ◽  
Author(s):  
Mara V. Galmarini ◽  
Chantal Maury ◽  
Emira Mehinagic ◽  
Virginia Sanchez ◽  
Rosa I. Baeza ◽  
...  

2019 ◽  
Vol 4 (5) ◽  
pp. 39-44
Author(s):  
Hisham A. Maddah

This paper suggests a new method of predicting flux values at reverse osmosis (RO) desalination plants.  The study is initiated by using the solution-diffusion model that is applied to the groundwater source at Abqaiq plant (500 RO plant) at Saudi Aramco, Dhahran, Saudi Arabia in order to calculate the osmotic pressure of the treated water for Shedgum/Abqaiq groundwater. For modelling purposes, the same technique is used to determine the osmotic pressure drops at the same plant configuration and operating conditions when using seawater sources such that of Arabian Gulf and the Red Sea waters. High rejection brackish water RO (BWRO) element Toray TM720D-400 with 8" is the RO membrane type that is used at Abqaiq plant. The calculated osmotic pressures of the three water sources, assuming that they are all treated at Abqaiq plant, are utilized to determine the appropriate flux values as well as membrane resistances of different BWRO Toray membranes. Values of numerous parameters such as water permeability constant, applied pressure, gas constant, water temperature, water molar volume and membrane thickness, water salinity/TDS are taken into account to develop our calculations through the solution-diffusion model. A comparison between low-pressure, standard and high-pressure BWRO Toray membranes performance have been established to select the ideal membrane type for the treatment of water from various sources at Abqaiq plant. The model results confirm an inverse relationship between the membrane thickness and the water flux rate. Also, a proportional linear relation between the overall water flux and the applied pressure across the membrane is identified. Higher flux rates and lower salinity indicate lower membrane resistance which yields to the higher water production. Modelled data predict that BWRO Toray TM720D-440 with 8" membrane is the optimal BWRO membrane choice for the three water sources at Abqaiq plant.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 662
Author(s):  
Jiayu Tian ◽  
Xingrui Zhao ◽  
Shanshan Gao ◽  
Xiaoying Wang ◽  
Ruijun Zhang

Brackish water is a potential fresh water resource with lower salt content than seawater. Desalination of brackish water is an important option to alleviate the prevalent water crisis around the world. As a membrane technology ranging between UF and RO, NF can achieve the partial desalination via size exclusion and charge exclusion. So, it has been widely concerned and applied in treatment of brackish water during the past several decades. Hereon, an overview of the progress in research on and application of NF technology for brackish water treatment is provided. On the basis of expounding the features of brackish water, the factors affecting NF efficiency, including the feed water characteristics, operating conditions and NF membrane properties, are analyzed. For the ubiquitous membrane fouling problem, three preventive fouling control strategies including feed water pretreatment, optimization of operating conditions and selection of anti-fouling membranes are summarized. In addition, membrane cleaning methods for restoring the fouled membrane are discussed. Furthermore, the combined utilization of NF with other membrane technologies is reviewed. Finally, future research prospects are proposed to deal with the current existing problems. Lessons gained from this review are expected to promote the sustainable development of brackish water treatment with NF technology.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hanaa M. Ali ◽  
Hanaa Gadallah ◽  
Sahar S. Ali ◽  
Rania Sabry ◽  
A. G. Gadallah

This paper was focused on the investigation of a forward osmosis- (FO-) reverse osmosis (RO) hybrid process to cotreat seawater and impaired water from steel industry. By using this hybrid process, seawater can be diluted before desalination, hence reducing the energy cost of desalination, and simultaneously contaminants present in the impaired water are prevented from migrating into the product water through the FO and RO membranes. The main objective of this work was to investigate on pilot-scale system the performance of the combined FO pretreatment and RO desalination hybrid system and specifically its effects on membrane fouling and overall solute rejection. Firstly, optimization of the pilot-scale FO process to obtain the most suitable and stable operating conditions for practical application was investigated. Secondly, pilot-scale RO process performance as a posttreatment to FO process was evaluated in terms of water flux and rejection. The results indicated that the salinity of seawater reduced from 35000 to 13000 mg/L after 3 hrs using FO system, while after 6 hrs it approached 10000 mg/L. Finally, FO/RO system was tested on continuous operation for 15 hrs and it was demonstrated that no pollutant was detected neither in draw solution nor in RO permeate after the end of operating time.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1089 ◽  
Author(s):  
Cassano ◽  
Bentivenga ◽  
Conidi ◽  
Galiano ◽  
Saoncella ◽  
...  

Polyvinylidenefluoride (PVDF) hollow fiber membranes prepared in laboratory through the inversion phase method were characterized and used to clarify an aqueous extract from red wine lees. Steady-state permeate fluxes of 53 kg/m2h were obtained in the treatment of the aqueous extract in selected operating conditions. Suspended solids were completely retained by the hollow fiber membranes while bioactive compounds, including polyphenols, anthocyanins, and resveratrol were recovered in the permeate stream. The clarified stream was then fractionated by nanofiltration (NF). Three different commercial membranes, in flat-sheet configuration (NP010 and NP030 from Microdyn-Nadir, MPF36 from Koch Membrane Systems), were selected and tested for their productivity and selectivity towards sugars and bioactive compounds, including phenolic compounds, anthocyanins, and resveratrol. All selected membranes showed high retention towards anthocyanins (higher than 93%). Therefore, they were considered suitable to concentrate anthocyanins from clarified wine lees extracts at low temperature. On the other hand, NF permeate streams resulted enriched in phenolic compounds and resveratrol. Among the selected membranes, the MPF36 exhibited the lowest retention towards resveratrol (10%) and polyphenols (26.3%) and the best separation factor between these compounds and anthocyanins.


Sign in / Sign up

Export Citation Format

Share Document