scholarly journals Phosphate and Ammonium Removal from Water through Electrochemical and Chemical Precipitation of Struvite

Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 150
Author(s):  
Kyösti Rajaniemi ◽  
Tao Hu ◽  
Emma-Tuulia Nurmesniemi ◽  
Sari Tuomikoski ◽  
Ulla Lassi

Batch electrocoagulation (BEC), continuous electrocoagulation (CEC), and chemical precipitation (CP) were compared in struvite (MgNH4PO4·6H2O) precipitation from synthetic and authentic water. In synthetic water treatment (SWT), struvite yield was in BEC 1.72, CEC 0.61, and CP 1.54 kg/m3. Corresponding values in authentic water treatment (AWT) were 2.55, 3.04, and 2.47 kg/m3. In SWT, 1 kg struvite costs in BEC, CEC, and CP were 0.55, 0.55, and 0.11 €, respectively, for AWT 0.35, 0.22 and 0.07 €. Phosphate removal in SWT was 93.6, 74.5, and 71.6% in BEC, CEC, and CP, respectively, the corresponding rates in AWT were 89.7, 77.8, and 74.4%. Ammonium removal for SWT in BEC, CEC, and CP were 79.4, 51.5, and 62.5%, respectively, rates in AWT 56.1, 64.1, and 60.9%. Efficiency in CEC and BEC are equal in nutrient recovery in SWT, although energy efficiency was better in CEC. CP is cheaper than BEC and CEC.

1990 ◽  
Vol 22 (7-8) ◽  
pp. 85-92 ◽  
Author(s):  
Ingemar Karlsson ◽  
Gunnar Smith

Chemically coagulated sewage water gives an effluent low in both suspended matter and organics. To use chemical precipitation as the first step in waste water treatment improves nitrification in the following biological stage. The precipitated sludge contains 75% of the organic matter in the sewage and can by hydrolysis be converted to readily degradable organic matter, which presents a valuable carbon source for the denitrification process. This paper will review experiences from full-scale applications as well as pilot-plant and laboratory studies.


Author(s):  
Cristina Morales-Figueroa ◽  
Alejandra Teutli-Sequeira ◽  
Ivonne Linares-Hernández ◽  
Verónica Martínez-Miranda ◽  
Laura Garduño-Pineda ◽  
...  

2021 ◽  
Author(s):  
Eleni Gianni ◽  
Christina Vasiliki Lazaratou ◽  
Georgios Panagopoulos ◽  
Panagiota Sarantari ◽  
Fotini Martsouka ◽  
...  

2017 ◽  
Vol 75 (6) ◽  
pp. 1500-1511 ◽  
Author(s):  
Shengjiong Yang ◽  
Pengkang Jin ◽  
Xiaochang C. Wang ◽  
Qionghua Zhang ◽  
Xiaotian Chen

In this study, a granular material (GM) developed from building waste was used for phosphate removal from phosphorus-containing wastewater. Batch experiments were executed to investigate the phosphate removal capacity of this material. The mechanism of removal proved to be a chemical precipitation process. The characteristics of the material and resulting precipitates, the kinetics of the precipitation and Ca2+ liberation processes, and the effects of dosage and pH were investigated. The phosphate precipitation and Ca2+ liberation processes were both well described by a pseudo-second-order kinetic model. A maximum precipitation capacity of 0.51 ± 0.06 mg g−1 and a liberation capacity of 6.79 ± 0.77 mg g−1 were measured under the experimental conditions. The processes reached equilibrium in 60 min. The initial solution pH strongly affected phosphate removal under extreme conditions (pH <4 and pH >10). The precipitates comprised hydroxyapatite and brushite. This novel GM can be considered a promising material for phosphate removal from wastewater.


2020 ◽  
Vol 17 (1) ◽  
pp. 74-90 ◽  
Author(s):  
Nader Ghaffari Khaligh ◽  
Mohd Rafie Johan

: A variety of processes were reported for efficient removing of heavy metal from wastewater, including but not limited to ion exchange, reverse osmosis, membrane filtration, flotation, coagulation, chemical precipitation, solvent extraction, electrochemical treatments, evaporation, oxidation, adsorption, and biosorption. Among the aforementioned techniques, adsorption/ion exchange has been known as a most important method for removing heavy metal ions and organic pollutants due to great removal performance, simple and easy process, cost-effectiveness and the considerable choice of adsorbent materials. : Nanotechnology and its applications have been developed in most branches of science and technology. Extensive studies have been conducted to remove heavy metal ions from wastewater by preparation and applications of various nanomaterials. Nanomaterials offer advantages in comparison to other materials including an extremely high specific surface area, low-temperature modification, short intraparticle diffusion distance, numerous associated sorption sites, tunable surface chemistry, and pore size. In order to evaluate an adsorbent, two key parameters are: the adsorption capacity and the desorption property. The adsorption parameters including the absorbent loading, pH and temperature, concentration of heavy metal ion, ionic strength, and competition among metal ions are often studied and optimized. : Several reviews have been published on the application of Graphene (G), Graphene Oxide (GO) in water treatment. In this minireview, we attempted to summarize the recent research advances in water treatment and remediation process by graphene-based materials and provide intensive knowledge of the removal of pollutants in batch and flow systems. Finally, future applicability perspectives are offered to encourage more interesting developments in this promising field. This minireview does not include patent literature.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 231-239 ◽  
Author(s):  
I. Kabdaşli ◽  
O. Tünay ◽  
M.Ş. Çetin ◽  
T. Ölmez

Magnesium ammonium phosphate (MAP) precipitation has a potential for ammonium removal from industrial wastewaters. Application basis of this recent method of treatment has not been fully determined. In this study application of MAP precipitation to leather tanning wastewaters has been experimentally evaluated. Five alternative places of MAP precipitation in leather tanning wastewater treatment scheme tested were; instead of plain settling, after plain settling, after polyelectrolyte added plain settling, within the chemical precipitation and after biological treatment. Among these alternatives MAP application instead of plain settling and within the chemical precipitation were found to be most favourable and efficient by reducing the nitrogen load to the level of nutrient requirement in the biological stage. pH 9.0-9.5 and stoichiometric magnesium and phosphate doses were determined to be optimum conditions for MAP precipitation.


Sign in / Sign up

Export Citation Format

Share Document