scholarly journals Novel Intensified Alternatives for Purification of Levulinic Acid Recovered from Lignocellulosic Biomass

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 490
Author(s):  
Massimiliano Errico ◽  
Roumiana P. Stateva ◽  
Sébastien Leveneur

The development of a bio-based economy has its foundations in the development of efficient processes to optimize biomass potential. In this context there are a multitude of molecules that can be either synthetized or recovered from biomass, among those the so-called 12 building-blocks reported by the US Department of Energy. Even if their identification and importance is clearly defined, research efforts concerning the purification or separation of these platform molecules are limited. To fill this gap, different configurations for the purification of levulinic acid recovered from lignocellulosic biomass are examined and compared in this work. In particular, hybrid configurations obtained by the combination of liquid-liquid extraction and distillation have been considered. It was demonstrated how a deep understanding of the subspace including all extraction-assisted simple column distillation configurations represents a fundamental step in the synthesis of different process alternatives. From a separation efficiency and economic standpoint, the proposed intensified liquid-liquid thermally equivalent configuration (LL-TE) and liquid-liquid side stream column configuration (LL-SSC) are promising solutions. Nonetheless, their performances are deeply interrelated to the purity target defined by the designer.


2019 ◽  
Vol 3 (2) ◽  
pp. 32
Author(s):  
Alon Davidy

Levulinic acid (LA) has been ranked as one of the “Top 10” building blocks for future bio-refineries as proposed by the US Department of Energy. It is considered one of the most important platform molecules for the production of fine chemicals and fuels based on its compatibility with existing processes, market economics, and industrial ability to serve as a platform for the synthesis of important derivatives. Hydrogenation of LA to produce γ-valerolactone (GVL) is an active area of research due to the potential of GVL to be used as a biofuel in its own right and for its subsequent transformation into hydrocarbon fuels. This paper contains a new design for a simple, cost effective, and safe hydrogenation reactor for the transformation of levulinic acid to γ-valerolactone (GVL) by utilizing high boiling point organic fluid. The hydrogenation reactor is composed of a heating source—organic fluid (called “DOWTHERM A” or “thermex”) and the catalytic reactor. The advantages of high boiling temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept more suitable and safer (water coming in contact with liquid metal is well understood in the metallurgical industry to be a steam explosion hazard) for heating the hydrogenation reactor. COMSOL multi-physics software version 4.3b was applied in this work and simultaneously solves the continuity, Navier-Stokes (fluid flow), energy (heat transfer), and diffusion with chemical reaction kinetics equations. It was shown that the heat flux supplied by the DOWTHERM A organic fluid could provide the necessary heat flux required for maintaining the hydrogenation process. It was found that the mass fractions of hydrogen and levulinic acid decreased along the reactor axis. The GVL mass fraction increased along the reactor axis.



Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 914
Author(s):  
Roberto Sole ◽  
Chiara Buranello ◽  
Noemi Bardella ◽  
Alessandro Di Michele ◽  
Stefano Paganelli ◽  
...  

The valorisation of biomass-derived platform chemicals via catalytic hydrogenation is an eco-friendly tool which allows us to recover bio-based building blocks and produce fine chemicals with high industrial appeal. In the present study, a novel surfactant-type triazolyl-thioether ligand was prepared, showing excellent catalytic activity in the presence of bis(1,5-cyclooctadiene)diiridium(I) dichloride [Ir(COD)Cl]2 for the hydrogenation of furfural, cinnamaldehyde, levulinic acid, 5-hydroxymethylfurfural, vanillin, and citral. Easy recovery by liquid/liquid extraction allowed us to recover the catalyst, which could then be efficiently recycled up to 11 times for the hydrogenation of furfural. In-depth analysis revealed the formation of spherical structures with metal nanoparticles as big as 2–6 nm surrounded by the anionic ligand, preventing iridium nanoparticle degradation.



Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.



2021 ◽  
Vol 6 (2) ◽  
pp. 18
Author(s):  
Alireza Sassani ◽  
Omar Smadi ◽  
Neal Hawkins

Pavement markings are essential elements of transportation infrastructure with critical impacts on safety and mobility. They provide road users with the necessary information to adjust driving behavior or make calculated decisions about commuting. The visibility of pavement markings for drivers can be the boundary between a safe trip and a disastrous accident. Consequently, transportation agencies at the local or national levels allocate sizeable budgets to upkeep the pavement markings under their jurisdiction. Infrastructure asset management systems (IAMS) are often biased toward high-capital-cost assets such as pavements and bridges, not providing structured asset management (AM) plans for low-cost assets such as pavement markings. However, recent advances in transportation asset management (TAM) have promoted an integrated approach involving the pavement marking management system (PMMS). A PMMS brings all data items and processes under a comprehensive AM plan and enables managing pavement markings more efficiently. Pavement marking operations depend on location, conditions, and AM policies, highly diversifying the pavement marking management practices among agencies and making it difficult to create a holistic image of the system. Most of the available resources for pavement marking management focus on practices instead of strategies. Therefore, there is a lack of comprehensive guidelines and model frameworks for developing PMMS. This study utilizes the existing body of knowledge to build a guideline for developing and implementing PMMS. First, by adapting the core AM concepts to pavement marking management, a model framework for PMMS is created, and the building blocks and elements of the framework are introduced. Then, the caveats and practical points in PMMS implementation are discussed based on the US transportation agencies’ experiences and the relevant literature. This guideline is aspired to facilitate PMMS development for the agencies and pave the way for future pavement marking management tools and databases.



MRS Advances ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 2147-2155
Author(s):  
Sudi Chen ◽  
Xitong Ren ◽  
Shufang Tian ◽  
Jiajie Sun ◽  
Feng Bai

AbstractThe self-assembly of optically active building blocks into functional nanocrystals as high-activity photocatalysts is a key in the field of photocatalysis. Cobalt porphyrin with abundant catalytic properties is extensively studied in photocatalytic water oxidation and CO2 reduction. Here, we present the fabrication of cobalt porphyrin nanocrystals through a surfactant-assisted interfacial self-assembly process using Co-tetra(4-pyridyl) porphyrin as building block. The self-assembly process relies on the combined noncovalent interactions such as π-π stacking and axial Co-N coordination between individual porphyrin molecules within surfactant micelles. Tuning different reaction conditions (temperature, the ratio of co-solvent DMF) and types of surfactant, various nanocrystals with well-defined 1D to 3D morphologies such as nanowires, nanorods and nano hexagonal prism were obtained. Due to the ordered accumulation of molecules, the nanocrystals exhibit the properties of the enhanced capability of visible light capture and can conduce to improve the transport and separation efficiency of the photogenerated carriers, which is important for photocatalysis. Further studies of photocatalytic CO2 reduction are being performed to address the relationship between the size and shape of the nanocrystals with the photocatalytic activity.



2010 ◽  
Vol 3 (1) ◽  
pp. 3-5 ◽  
Author(s):  
Steven Slater ◽  
Kenneth Keegstra ◽  
Timothy J. Donohue






2017 ◽  
Vol 61 (1) ◽  
pp. 131-153 ◽  
Author(s):  
Williams C Iheme ◽  
Sanford U Mba

AbstractIn response to the inability of micro, small and medium scale enterprises (MSMEs) to access credit to finance their business operations, the governor of the Central Bank of Nigeria passed the Central Bank of Nigeria (Registration of Security Interests in Movable Property by Banks and Other Financial Institutions in Nigeria) Regulations, No 1, 2015. The purport of this regulation is, among other things, to ensure that MSMEs can use items of personal property to create security. This article critically examines the regulation in the light of the building blocks of article 9 of the US Uniform Commercial Code, which is not only a paradigmatic piece of legislation but appears to be the model on which the Nigerian regulation is based. This critical examination leads the authors to conclude that, although the regulation represents the first steps to reform, much more remains to be done to ensure effectiveness.



Sign in / Sign up

Export Citation Format

Share Document