scholarly journals Recyclable Ir Nanoparticles for the Catalytic Hydrogenation of Biomass-Derived Carbonyl Compounds

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 914
Author(s):  
Roberto Sole ◽  
Chiara Buranello ◽  
Noemi Bardella ◽  
Alessandro Di Michele ◽  
Stefano Paganelli ◽  
...  

The valorisation of biomass-derived platform chemicals via catalytic hydrogenation is an eco-friendly tool which allows us to recover bio-based building blocks and produce fine chemicals with high industrial appeal. In the present study, a novel surfactant-type triazolyl-thioether ligand was prepared, showing excellent catalytic activity in the presence of bis(1,5-cyclooctadiene)diiridium(I) dichloride [Ir(COD)Cl]2 for the hydrogenation of furfural, cinnamaldehyde, levulinic acid, 5-hydroxymethylfurfural, vanillin, and citral. Easy recovery by liquid/liquid extraction allowed us to recover the catalyst, which could then be efficiently recycled up to 11 times for the hydrogenation of furfural. In-depth analysis revealed the formation of spherical structures with metal nanoparticles as big as 2–6 nm surrounded by the anionic ligand, preventing iridium nanoparticle degradation.

2021 ◽  
Vol 11 (16) ◽  
pp. 7435
Author(s):  
Hyun Jin Jung ◽  
Kyeong Keun Oh

Low-acid hydrothermal (LAH) fractionation conditions were optimized for the effective degradation of hemicellulose from pine wood (Pinus densiflora). The hemicellulosic sugar yield was maximized at 82.5% when the pine wood was fractionated at 190 °C, with 0.5 wt.% of sulfuric acid, and for 10 min. Consecutively, acidified heat treatment with zinc chloride and solvent extraction with ethyl acetate were carried out for the recovery of bio-based platform chemicals, such as furfural and acetic acid, from liquid hydrolysate through liquid–liquid extraction (LLE). Overall, 61.5% of xylose was decomposed into furfural, and the yield of acetic acid was 62.3% and furfural 66.1%. After LAH fractionation, 64.8% of the solid remained and was pelletized. The pellets showed excellent fuel characteristics, i.e., significant ash rejection (74.5%) and high calorific values (4770 kcal/kg), and the precursors of NOx and SOx also decreased by up to 60.0% and 71.4%, respectively.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 796
Author(s):  
Thomas Brouwer ◽  
Bas C. Dielis ◽  
Jorrit M. Bock ◽  
Boelo Schuur

The solid–liquid equilibrium (SLE) behavior and liquid–liquid extraction (LLX) abilities of deep eutectic solvents (DESs) containing (a) thymol and L-menthol, and (b) trioctylphosphine oxide (TOPO) and L-menthol were evaluated. The distribution coefficients (KD) were determined for the solutes relevant for two biorefinery cases, including formic acid, levulinic acid, furfural, acetic acid, propionic acid, butyric acid, and L-lactic acid. Overall, for both cases, an increasing KD was observed for both DESs for acids increasing in size and thus hydrophobicity. Furfural, being the most hydrophobic, was seen to extract the highest KD (for DES (a) 14.2 ± 2.2 and (b) 4.1 ± 0.3), and the KD of lactic acid was small, independent of the DESs (DES (a) 0.5 ± 0.07 and DES (b) 0.4 ± 0.05). The KD of the acids for the TOPO and L-menthol DES were in similar ranges as for traditional TOPO-containing composite solvents, while for the thymol/L-menthol DES, in the absence of the Lewis base functionality, a smaller KD was observed. The selectivity of formic acid and levulinic acid separation was different for the two DESs investigated because of the acid–base interaction of the phosphine group. The thymol and L-menthol DES was selective towards levulinic acid (Sij = 9.3 +/− 0.10, and the TOPO and L-menthol DES was selective towards FA (Sij = 2.1 +/− 0.28).


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 490
Author(s):  
Massimiliano Errico ◽  
Roumiana P. Stateva ◽  
Sébastien Leveneur

The development of a bio-based economy has its foundations in the development of efficient processes to optimize biomass potential. In this context there are a multitude of molecules that can be either synthetized or recovered from biomass, among those the so-called 12 building-blocks reported by the US Department of Energy. Even if their identification and importance is clearly defined, research efforts concerning the purification or separation of these platform molecules are limited. To fill this gap, different configurations for the purification of levulinic acid recovered from lignocellulosic biomass are examined and compared in this work. In particular, hybrid configurations obtained by the combination of liquid-liquid extraction and distillation have been considered. It was demonstrated how a deep understanding of the subspace including all extraction-assisted simple column distillation configurations represents a fundamental step in the synthesis of different process alternatives. From a separation efficiency and economic standpoint, the proposed intensified liquid-liquid thermally equivalent configuration (LL-TE) and liquid-liquid side stream column configuration (LL-SSC) are promising solutions. Nonetheless, their performances are deeply interrelated to the purity target defined by the designer.


Author(s):  
Marcos Diego Pereira Santana ◽  
Rafael Belém Lavrador ◽  
Pedro de Alcântara Pessoa Filho

2019 ◽  
Author(s):  
Zhen Liu ◽  
Xiaohan Li ◽  
Tian Zeng ◽  
Keary Engle

A substrate-directed enantioselective <i>anti</i>-carboboration reaction of alkenes has been developed, wherein a carbon based nucleophile and a boron moiety are installed across the C=C bond through a 5- or 6-membered palladacycle intermediate. The reaction is promoted by a palladium(II) catalyst and a mondentate oxzazoline ligand. A range of enantioenriched secondary alkylboronate products were obtained with moderate to high enantioselectivity that could be further upgraded by recrystallization. This work represents a new method to synthesize versatile and valuable alkylboronate building blocks. Building on an earlier mechanistic proposal by Peng, He, and Chen, a revised model is proposed to account for the stereoconvergent nature of this transformation.


Sign in / Sign up

Export Citation Format

Share Document