scholarly journals Adenoviral Vector COVID-19 Vaccines: Process and Cost Analysis

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1430
Author(s):  
Rafael G. Ferreira ◽  
Neal F. Gordon ◽  
Rick Stock ◽  
Demetri Petrides

The COVID-19 pandemic has motivated the rapid development of numerous vaccines that have proven effective against SARS-CoV-2. Several of these successful vaccines are based on the adenoviral vector platform. The mass manufacturing of these vaccines poses great challenges, especially in the context of a pandemic where extremely large quantities must be produced quickly at an affordable cost. In this work, two baseline processes for the production of a COVID-19 adenoviral vector vaccine, B1 and P1, were designed, simulated and economically evaluated with the aid of the software SuperPro Designer. B1 used a batch cell culture viral production step, with a viral titer of 5 × 1010 viral particles (VP)/mL in both stainless-steel and disposable equipment. P1 used a perfusion cell culture viral production step, with a viral titer of 1 × 1012 VP/mL in exclusively disposable equipment. Both processes were sized to produce 400 M/yr vaccine doses. P1 led to a smaller cost per dose than B1 ($0.15 vs. $0.23) and required a much smaller capital investment ($126 M vs. $299 M). The media and facility-dependent expenses were found to be the main contributors to the operating cost. The results indicate that adenoviral vector vaccines can be practically manufactured at large scale and low cost.

2016 ◽  
Author(s):  
Huimin Li

ABSTRACT With plenty of latest discoveries witnessed from East Africa, the petroleum atlas reshaping is expected where some new faces (e.g. Mozambique, Kenya, Tanzania, etc.) may play emergent roles besides traditional oil countries in Africa. Due to general lack of infrastructure construction and capital investment, it still need some time for large-scale commercial production and the involvement of international oil companies is indispensable in the process. Dramatic price drop has tremendously stricken both governments and international oil companies (IOC) in oil-producing countries since 2014. The effectiveness in which governments and IOCs adjust to this reality will determine the extent and the pace of future development of these countries’ oil sectors. Most IOCs were struggling to cut capital expenditure and control operating cost to survive, and how to maintain and attract investment is regarded as huge challenges by many governments in the downward scenario. Apart from resource factors, petroleum fiscal terms are one of the key factors in the investment decision for IOCs. The attractiveness of fiscal contracts has a fundamental effect on profitability of petroleum projects, and thus an important indicator for evaluating investment feasibility in the country. The paper gives an overview on fiscal transformation in most Africa oil countries, some of them were trying to increase government share in oil profits to support social expenditures, and others have provided fiscal incentives to absorb further investment in the oil sector. It shows that fiscal policies in the countries where national economy relies more on oil revenues are less stable during the past decade. Some upstream projects in Nigeria are illustrated to show the impacts of different contract terms on economic benefits. Thus with new government's coming into power, most IOCs are holding back further investment and expecting negotiation with the authorities for confirmation on fiscal terms applied in their assets to avoid potential contractual risks, like PIB, Side letter, etc. The implications regarding petroleum regime are summarized based on the experience from Nigeria for emerging countries in East Africa, relatively stable fiscal policy with some incentives to encourage exploration activities would be helpful to petroleum industry. Lastly, investment suggestions are presented with priorities to promote business development in the area.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Samir Andrade Mendonça ◽  
Reka Lorincz ◽  
Paul Boucher ◽  
David T. Curiel

AbstractAdenoviral vectors have been explored as vaccine agents for a range of infectious diseases, and their ability to induce a potent and balanced immune response made them logical candidates to apply to the COVID-19 pandemic. The unique molecular characteristics of these vectors enabled the rapid development of vaccines with advanced designs capable of overcoming the biological challenges faced by early adenoviral vector systems. These successes and the urgency of the COVID-19 situation have resulted in a flurry of candidate adenoviral vector vaccines for COVID-19 from both academia and industry. These vaccines represent some of the lead candidates currently supported by Operation Warp Speed and other government agencies for rapid translational development. This review details adenoviral vector COVID-19 vaccines currently in human clinical trials and provides an overview of the new technologies employed in their design. As these vaccines have formed a cornerstone of the COVID-19 global vaccination campaign, this review provides a full consideration of the impact and development of this emerging platform.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Li Li ◽  
Yalin Lei ◽  
Chunyan He ◽  
Sanmang Wu ◽  
Jiabin Chen

Climate change has threatened our economic, environmental, and social sustainability seriously. The world has taken active measures in dealing with climate change to mitigate carbon emissions. Predicting the carbon emissions peak has become a global focus, as well as a leading target for China’s low carbon development. China has promised its carbon emissions will have peaked by around 2030, with the intention of peaking earlier. Scholars generally have studied the influencing factors of carbon emissions. However, research on carbon emissions peaks is not extensive. Therefore, by setting a low scenario, a middle scenario, and a high scenario, this paper predicts China’s carbon emissions peak from 2015 to 2035 based on the data from 1998 to 2014 using the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model. The results show that in the low, middle, and high scenarios China will reach its carbon emissions peak in 2024, 2027, and 2030, respectively. Thus, this paper puts forward the large-scale application of technology innovation to improve energy efficiency and optimize energy structure and supply and demand. China should use industrial policy and human capital investment to stimulate the rapid development of low carbon industries and modern agriculture and service industries to help China to reach its carbon emissions peak by around 2030 or earlier.


2021 ◽  
Author(s):  
Cong Wang ◽  
Zehao Song ◽  
Pei Shi ◽  
Lin Lv ◽  
Houzhao Wan ◽  
...  

With the rapid development of portable electronic devices, electric vehicles and large-scale grid energy storage devices, it needs to reinforce specific energy and specific power of related electrochemical devices meeting...


2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


Author(s):  
Junshu Wang ◽  
Guoming Zhang ◽  
Wei Wang ◽  
Ka Zhang ◽  
Yehua Sheng

AbstractWith the rapid development of hospital informatization and Internet medical service in recent years, most hospitals have launched online hospital appointment registration systems to remove patient queues and improve the efficiency of medical services. However, most of the patients lack professional medical knowledge and have no idea of how to choose department when registering. To instruct the patients to seek medical care and register effectively, we proposed CIDRS, an intelligent self-diagnosis and department recommendation framework based on Chinese medical Bidirectional Encoder Representations from Transformers (BERT) in the cloud computing environment. We also established a Chinese BERT model (CHMBERT) trained on a large-scale Chinese medical text corpus. This model was used to optimize self-diagnosis and department recommendation tasks. To solve the limited computing power of terminals, we deployed the proposed framework in a cloud computing environment based on container and micro-service technologies. Real-world medical datasets from hospitals were used in the experiments, and results showed that the proposed model was superior to the traditional deep learning models and other pre-trained language models in terms of performance.


Author(s):  
Brian Bush ◽  
Laura Vimmerstedt ◽  
Jeff Gonder

Connected and automated vehicle (CAV) technologies could transform the transportation system over the coming decades, but face vehicle and systems engineering challenges, as well as technological, economic, demographic, and regulatory issues. The authors have developed a system dynamics model for generating, analyzing, and screening self-consistent CAV adoption scenarios. Results can support selection of scenarios for subsequent computationally intensive study using higher-resolution models. The potential for and barriers to large-scale adoption of CAVs have been analyzed using preliminary quantitative data and qualitative understandings of system relationships among stakeholders across the breadth of these issues. Although they are based on preliminary data, the results map possibilities for achieving different levels of CAV adoption and system-wide fuel use and demonstrate the interplay of behavioral parameters such as how consumers value their time versus financial parameters such as operating cost. By identifying the range of possibilities, estimating the associated energy and transportation service outcomes, and facilitating screening of scenarios for more detailed analysis, this work could inform transportation planners, researchers, and regulators.


Sign in / Sign up

Export Citation Format

Share Document