scholarly journals Experimental Study on Axial Temperature Profile of Jet Fire of Oil-Filled Equipment in Substation

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1460
Author(s):  
Ruibang Sun ◽  
Xing Yang ◽  
Juncai Wang ◽  
Peng Chen ◽  
Liusuo Wu

With the widespread use of substations around the world, oil jet fire accidents from transformer oil-filled equipment in substations caused by faults have occurred from time to time. In this paper, a series of transformer oil jet fire experiments are carried out by changing the external heat source (30 cm and 40 cm) and the inner diameter of the container (5 cm, 8 cm and 10 cm) to study the axial centerline temperature distribution of the transformer oil jet fire plume of the transformer oil-filled equipment in the substation. The experiment uses K-type thermocouple, electronic balance and CCD to measure and assess the temperature distribution of the axial centerline of the fire plume of the transformer oil jet. The result demonstrates that the axial centerline temperature of the fire plume increases with the external heat release rate and the inner diameter of the container. In addition, a novel axial temperature distribution prediction model of the transformer oil jet fire plume is established. This model can effectively predict the oil jet fire plume temperature of transformer oil- filling equipment in substations, and provide help for substation fire control.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2760
Author(s):  
Ruiye Li ◽  
Peng Cheng ◽  
Hai Lan ◽  
Weili Li ◽  
David Gerada ◽  
...  

Within large turboalternators, the excessive local temperatures and spatially distributed temperature differences can accelerate the deterioration of electrical insulation as well as lead to deformation of components, which may cause major machine malfunctions. In order to homogenise the stator axial temperature distribution whilst reducing the maximum stator temperature, this paper presents a novel non-uniform radial ventilation ducts design methodology. To reduce the huge computational costs resulting from the large-scale model, the stator is decomposed into several single ventilation duct subsystems (SVDSs) along the axial direction, with each SVDS connected in series with the medium of the air gap flow rate. The calculation of electromagnetic and thermal performances within SVDS are completed by finite element method (FEM) and computational fluid dynamics (CFD), respectively. To improve the optimization efficiency, the radial basis function neural network (RBFNN) model is employed to approximate the finite element analysis, while the novel isometric sampling method (ISM) is designed to trade off the cost and accuracy of the process. It is found that the proposed methodology can provide optimal design schemes of SVDS with uniform axial temperature distribution, and the needed computation cost is markedly reduced. Finally, results based on a 15 MW turboalternator show that the peak temperature can be reduced by 7.3 ∘C (6.4%). The proposed methodology can be applied for the design and optimisation of electromagnetic-thermal coupling of other electrical machines with long axial dimensions.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Alexander M. Laptev ◽  
Jürgen Hennicke ◽  
Robert Ihl

Spark Plasma Sintering (SPS) is a technology used for fast consolidation of metallic, ceramic, and composite powders. The upscaling of this technology requires a reduction in energy consumption and homogenization of temperature in compacts. The application of Carbon Fiber-Reinforced Carbon (CFRC) insulating plates between the sintering setup and the electrodes is frequently considered as a measure to attain these goals. However, the efficiency of such a practice remains largely unexplored so far. In the present paper, the impact of CFRC plates on required power, total sintering energy, and temperature distribution was investigated by experiments and by Finite Element Modeling (FEM). The study was performed at a temperature of 1000 °C with a graphite dummy mimicking an SPS setup. A rather moderate influence of CFRC plates on power and energy demand was found. Furthermore, the cooling stage becomes considerably longer. However, the application of CFRC plates leads to a significant reduction in the axial temperature gradient. The comparative analysis of experimental and modeling results showed the good capability of the FEM method for prediction of temperature distribution and required electric current. However, a discrepancy between measured and calculated voltage and power was found. This issue must be further investigated, considering the influence of AC harmonics in the DC field.


2010 ◽  
Vol 7 (2) ◽  
pp. 147-153
Author(s):  
Suwardi Suwardi

Relation between pore model and center-line temperature of high burn up UO2 Pellet. Temperature distribution has been evaluated by using different model of pore distribution. Typical data of power distribution and coolant data have been chosen in this study. Different core model and core distribution model have been studied for related temperature, in correlation with high burn up thermal properties. Finite element combined finite different adapted from Saturn-1 has been used for calculating the temperature distribution. The center-line temperature for different pore model and related discussion is presented.   Keywords: pore model, high burn up, UO2 pellet, centerline temperature.


Author(s):  
Quanyi Liu ◽  
Wei Yao ◽  
Jiusheng Yin ◽  
Rui Yang ◽  
Hui Zhang

Airplane as one of the important transport vehicles in our life, its safety problem related to in-flight fire has attracted a wide-spread attention. The combustion behavior of the cabin fire in flight shows some special characteristics because of the high-altitude environment with low-pressure and low oxygen concentration. A low-pressure chamber of size 2 m×3 m×2 m has been built to simulate high-altitude environments, where multiple static pressures for pool fire tests can be configured in the range between standard atmospheric pressure 101.3KPa and 30KPa. Two different sizes of pool fires were tested. Then corresponding modeling were conducted by a LES code FDS V5.5 to examine the mechanism of pressure effect on the n-Heptane pool fire behavior. The burning of liquid fuel was modeled by a Clausius-Clapeyron relation based liquid pyrolysis model. The modeling data was validated against the experimental measurements. The mass burning rate of free-burning pool fire decreases with the decreasing of pressure, which was observed from the modeling to be due to the reduction of flame heat feedback to the fuel surface. Under low pressure, the fire plume temperature increases for the same burning rate. The mechanism of pressure effect on fire behavior was analyzed based on the modeling data.


2014 ◽  
Vol 32 (5) ◽  
pp. 406-416 ◽  
Author(s):  
Xiaochun Zhang ◽  
Longhua Hu ◽  
Xiaolei Zhang ◽  
Lizhong Yang ◽  
Shuangfeng Wang

2010 ◽  
Vol 19 (7) ◽  
pp. 895 ◽  
Author(s):  
Craig B. Clements

High-frequency thermocouple measurements were made during an experimental grass fire conducted during ideal weather with overcast and windy conditions. Analysis of the thermodynamic structure of the fire plume showed that a maximum plume temperature of 295.2°C was measured directly above the combustion zone. Plume heating rates were on the order of 26–45 kW m–2 and occurred in the region just above the combustion zone between 10 and 15 m above ground level and were followed by cooling of approximately –37 and –44 kW m–2. The observed cooling was caused by strong entrainment that occurred behind the fire front and plume. The rapid heating and subsequent cooling indicate that the heating caused by a fire front is limited to a small volume around the flaming front and that the rates of heat gain occur for a short duration. The short duration of plume heating is due to the fast rate of spread of the fire front and ambient wind.


Sign in / Sign up

Export Citation Format

Share Document