scholarly journals Electrochemical Microslot Machining by Ultrasonic-Vibration-Aided Electrolyte on Nitinol Wire

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1752
Author(s):  
Jung-Chou Hung ◽  
Po-Jen Yang

In this research, the main purpose was to study the applicability of a machining method on microscale medical-equipment manufacturing. The characteristics of wire electrochemical micromachining (WECMM) against NiTi 50-50 wire was investigated. The study utilized a tungsten wire 0.03 mm in diameter as an electrode to cut a fine slot into the nickel–titanium wire. In order to reach a high-precision WECMM finish, an ultrashort pulse power generator was used as a power source to minimize the stray current effect, thus improving the machining accuracy. During the process, various machining parameters were tested for their effects on machining characteristics. In addition, ultrasonic-vibration-aided WECMM was investigated to determine whether it benefited the machining characteristics. The experiment’s results showed that under such an experiment setting, microslots can be successfully manufactured. Furthermore, with the advance adjustment of experimental parameters, the machining accuracy was improved. Finally, a fine slot was manufactured under the optimum experiment parameters and aided by ultrasonic vibration.

Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 698
Author(s):  
Siying Ling ◽  
Minghao Li ◽  
Yong Liu ◽  
Kan Wang ◽  
Yong Jiang

Wire electrochemical micromachining (WECMM) technology is regarded a promising method to fabricate high aspect ratio microstructures on hard-to-machining materials, however, the by-product accumulation in the machining gap limits its application. In this paper, a new method called ultrasonic-assisted wire electrochemical micromachining (UA-WECMM) is proposed to improve the machining performance of WECMM. Firstly, a flow-field simulation in the machining gap was carried out; the results showed that the ultrasonic vibration of electrode can remarkably enhance the mass transport in the machining gap and improve the machining condition. Secondly, experiments were performed to confirm the effect of ultrasonic vibration, which illustrated that the vibration with proper amplitude can reduce the slit width and improve the morphology of machined surface. Moreover, the influence of other machining parameters were also discussed. Finally, a T-type micro connector with good surface roughness (Ra 0.286 μm) was fabricated on a 300-μm-thick 304 stainless steel workpiece and a micro gear (diameter: 3.362 mm; Ra: 0.271 μm) with an aspect ratio of 7 was fabricated on a 2-mm-thick workpiece. It is proved that the proposed ultrasonic-assisted wire electrochemical micromachining method has considerable potential and broad application prospects.


2010 ◽  
Vol 34-35 ◽  
pp. 282-286
Author(s):  
Wei Feng Lang ◽  
Hong Li Zhang

A critical speed formula was given based on the analysis of kinematic characteristics during tangential ultrasonic vibration assisted grinding (TUAG) process. By the formula, the machining parameters can be correctly set to insure the separate characteristics of TUAG process. The grinding force can be decreased and the machining surface quality can be improved during TUAG process with separability. Grinding experiments were conducted, and the experiment results are in good agreement with theory analysis results.


2012 ◽  
Vol 217-219 ◽  
pp. 2555-2559 ◽  
Author(s):  
Sosuke Kurogi ◽  
Wataru Natsu ◽  
Zu Yuan Yu

In ECM process, insulating by-products exists in the inter-electrode area. These by-products disturb the current flow between the tool and workpiece electrodes, and thus affect the machining accuracy. As one of the ways to remove the by-products, a method was proposed to apply ultrasonic vibration to the tool electrode. However, the influence of the electrolyte concentration and the effect of ultrasonic vibration on the machining characteristics of the WC alloy have not been investigated yet. Therefore in this study, these influences were experimentally investigated. It was found that the machining accuracy is increased by using the low concentration electrolyte. Also, machining of the tungsten carbide (WC) alloy when applying the ultrasonic vibration to the tool electrode becomes possible.


2011 ◽  
Vol 295-297 ◽  
pp. 834-839 ◽  
Author(s):  
Yong Wei Zhu ◽  
Xing Lei Miao ◽  
Chao Feng Zhang

The micro-PECM (Pulse Electrochemical Machining) combining synchronous ultrasonic vibration is proposed as a new technology for to solve the difficulty machining problems of conductive hard and tough materials. The feasibility of micro-PECM combining synchronous ultrasonic vibration is studied. The synchronous way is analyzed; the synchronous electrical circuit is designed and made. The synchronous electrochemical micro-machining system combining ultrasonical vibration are built and improved,which machining parameters can be adjusted in a wide ranges, and the synchronous target of the ultrasonical vibration with the voltage of micro-PECM can be realized. The micro-machining electrodes are manufactured in different sections and sizes by combined electrical discharge machining. The mechanism tests of micro-PECM are carried, which kentaniums (YBD151、YG8)and stainless steel are machined and the results are analyzed and discussed. Contrast with the single micro-USM, the micro-PECM combining ultrasonic vibration has high productivity, good machining accuracy and surface quality; furthermore, its cathode wastage is low. The micro-PECM combining synchronous ultrasonic vibration has the best machining precision and surface quality.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 125
Author(s):  
Yan Chen ◽  
Xu Feng ◽  
Gongming Xin

With the rapid development of micro-electro-mechanical systems (MEMSs), the demand for glass microstructure is increasing. For the purpose of achieving high quality and stable machining of glass microstructures with a high aspect ratio, ultrasonic vibration is applied into the micro-wire electrochemical discharge machining (WECDM), which is proposed as ultrasonic vibration-assisted WECDM with a micro helical electrode. Firstly, the formation of a gas film on the surface of the helical electrode in WECDM machining is simulated, meaning the thickness of the gas film can be reduced by adding suitable ultrasonic amplitude, thus reducing the critical voltage, then the machining localization and stability were enhanced. Then, the micro helical electrode with a diameter of 100 μm is used to carry out sets of experiments that study the influence of ultrasonic amplitude, machining voltage, duty factor, pulse frequency, and feed rate on the slit width. The experimental results show that the machining stability and quality are significantly improved by adding suitable ultrasonic amplitude. When the amplitude was 5.25 μm, the average slit width was reduced to 128.63 μm with a decrease of 20.78%. Finally, with the optimized machining parameters, micro planar coil structure and microcantilever structure with a high aspect ratio were fabricated successfully on the glass plate. It is proved that ultrasonic vibration-assisted WECDM with the micro helical electrode method can meet the requirements of high aspect ratio microstructure machining for hard and brittle materials.


Sign in / Sign up

Export Citation Format

Share Document