scholarly journals Experimental Research of High-Pressure Methane Pulse Jet and Premixed Ignition Combustion Performance of a Direct Injection Injector

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1977
Author(s):  
Shenggang Guo ◽  
Yan Lei ◽  
Xiaofeng Wang ◽  
Tao Qiu ◽  
Bin Pang ◽  
...  

Natural gas (NG) direct injection (DI) technology benefits the engine with high efficiency and clean emissions, and the high-pressure gas fuel injection process causes crucial effects on the combustion. This study presents an optical experimental investigation on the high-pressure methane single-hole direct injection and premixed ignition combustion based on a visualization cuboid constant volume bomb (CVB) test rig. The experimental results show that the methane jet process is divided into two stages. The methane gas jet travels at a faster speed during the unstable stage I than that during the stable stage II. The injection pressure causes more influence on both the jet penetration distance and the jet cone area during stage II. The methane jet premixed flame is a stable flame with a nearly spherical shape, and its equivalent radius linearly increases. The methane jet premixed flame area also increases while the flame stretch rate declines. The methane jet premixed flame velocity rises as both the standing time and equivalent ratio increase. The methane jet premixed flame is a partial premixed flame, and the peak of the methane jet premixed flame occurs at greater equivalence ratio ϕ, i.e., ϕ > 2. As the injection pressure rises, the jet premixed flame equivalent radius increases, and the flame velocity linearly increases. The higher the methane injection pressure, the faster the jet premixed flame velocity.

2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Akhilendra Pratap Singh ◽  
Avinash Kumar Agarwal

Fuel injection parameters such as fuel injection pressure (FIP) and start of main injection (SoMI) timings significantly affect the performance and emission characteristics of a common rail direct injection (CRDI) diesel engine. In this study, a state-of-the-art single cylinder research engine was used to investigate the effects of fuel injection parameters on combustion, performance, emission characteristics, and particulates and their morphology. The experiments were carried out at three FIPs (400, 700, and 1000 bar) and four SoMI timings (4 deg, 6 deg, 8 deg, and 10 deg bTDC) for biodiesel blends [B20 (20% v/v biodiesel and 80% v/v diesel) and B40 (40% v/v biodiesel and 60% v/v diesel)] compared to baseline mineral diesel. The experiments were performed at a constant engine speed (1500 rpm), without pilot injection and exhaust gas recirculation (EGR). The experimental results showed that FIP and SoMI timings affected the in-cylinder pressure and the heat release rate (HRR), significantly. At higher FIPs, the biodiesel blends resulted in slightly higher rate of pressure rise (RoPR) and combustion noise compared to baseline mineral diesel. All the test fuels showed relatively shorter combustion duration at higher FIPs and advanced SoMI timings. The biodiesel blends showed slightly higher NOx and smoke opacity compared to baseline mineral diesel. Lower particulate number concentration at higher FIPs was observed for all the test fuels. However, biodiesel blends showed emission of relatively higher number of particulates compared to baseline mineral diesel. Significantly lower trace metals in the particulates emitted from biodiesel blend fueled engine was an important finding of this study. The particulate morphology showed relatively smaller number of primary particles in particulate clusters from biodiesel exhaust, which resulted in relatively lower toxicity, rendering biodiesel to be more environmentally benign.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Fuel availability, global warming, and energy security are the three main driving forces, which determine suitability and long-term implementation potential of a renewable fuel for internal combustion engines for a variety of applications. Comprehensive engine experiments were conducted in a single-cylinder gasoline direct injection (GDI) engine prototype having a compression ratio of 10.5, for gaining insights into application of mixtures of gasoline and primary alcohols. Performance, emissions, combustion, and particulate characteristics were determined at different engine speeds (1500, 2000, 2500, 3000 rpm), different fuel injection pressures (FIP: 40, 80, 120, 160 bars) and different test fuel blends namely 15% (v/v) butanol, ethanol, and methanol blended with gasoline, respectively (Bu15, E15, and M15) and baseline gasoline at a fixed (optimum) spark timing of 24 deg before top dead center (bTDC). For a majority of operating conditions, gasohols exhibited superior characteristics except minor engine performance penalty. Gasohols therefore emerged as serious candidate as a transitional renewable fuel for utilization in the existing GDI engines, without requirement of any major hardware changes.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Chetankumar Patel ◽  
Joonsik Hwang ◽  
Choongsik Bae ◽  
Rashmi A. Agarwal ◽  
Avinash Kumar Agarwal

Abstract This study aims to assess the microscopic characteristics of Jatropha, Karanja, and Waste cooking oil-based biodiesels vis-a-vis conventional diesel under different ambient conditions in order to understand the in-cylinder processes, while using biodiesels produced from different feedstocks in the compression ignition engines. All test-fuels were injected in ambient atmosphere using a common-rail direct injection (CRDI) fuel injection system at a fuel injection pressure (FIP) of 40 MPa. Microscopic spray characteristics were measured using phase Doppler interferometer (PDI) in the axial direction of the spray at a distance of 60–90 mm downstream of the nozzle and at 0 to 3-mm distance from the central axis in the radial direction. All biodiesels exhibited relatively larger Sauter mean diameter (SMD) of the spray droplets and higher droplet velocities compared to baseline mineral diesel, possibly due to relatively higher fuel viscosity and surface tension of biodiesels. It was also observed that SMD of the spray droplets decreased with increasing distance in the radial and axial directions and the same trend was observed for all test-fuels.


Author(s):  
Ratnak Sok ◽  
Jin Kusaka

Abstract Injected gasoline into the O2-depleted environment in the recompression stroke can be converted into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reaction. These reformate species influence the combustion phenomena of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, a production-based single-cylinder research engine was boosted to reach IMEPn = 0.55 MPa in which its indicated efficiency peaks at 40–41%. Experimentally, the main combustion phases are advanced under single-pulse direct fuel injection into the negative valve overlap (NVO) compared with that of the intake stroke. NVO peak in-cylinder pressures are lower than that of motoring, which emphasizes that endothermic reaction occurs during the interval. Low O2 concentration could play a role in this evaporative charge cooling effect. This phenomenon limits the oxidation reaction, and the thermal effect is not pronounced. For understanding the recompression reaction phenomena, 0D simulation with three different chemical reaction mechanisms is studied to clarify that influences of direct injection timing in NVO on combustion advancements are kinetically limited by reforming. The 0D results show the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. By combining these reformed species into the main fuel-air mixture, predicted ignition delays are shortened. The effects of the reformed species on the main combustion are confirmed by 3D-CFD calculation, and the results show that OH radical generation is advanced under NVO fuel injection compared with that of intake stroke conditions thus earlier heat release and cylinder pressure are noticeable. Also, parametric studies on injection pressure and double-pulse injections on engine combustion are performed experimentally.


Author(s):  
Riley C. Abel ◽  
Jon Luecke ◽  
Matthew A. Ratcliff ◽  
Bradley T. Zigler

Abstract Cetane number is one of the most important fuel performance metrics for mixing controlled compression-ignition “diesel” engines, quantifying a fuel’s propensity for autoignition when injected into end-of-compression-type temperature and pressure conditions. The historical default and referee method on a Cooperative Fuel Research (CFR) engine configured with indirect fuel injection and variable compression ratio is cetane number (CN) rating. A subject fuel is evaluated against primary reference fuel blends, with heptamethylnonane defining a low-reactivity endpoint of CN = 15 and hexadecane defining a high-reactivity endpoint of CN = 100. While the CN scale covers the range from zero (0) to 100, typical testing is in the range of 30 to 65 CN. Alternatively, several constant-volume combustion chamber (CVCC)-based cetane rating devices have been developed to rate fuels with an equivalent derived cetane number (DCN) or indicated cetane number (ICN). These devices measure ignition delay for fuel injected into a fixed volume of high-temperature and high-pressure air to simulate end-of-compression-type conditions. In this study, a range of novel fuel compounds are evaluated across three CVCC methods: the Ignition Quality Tester (IQT), Fuel Ignition Tester (FIT), and Advanced Fuel Ignition Delay Analyzer (AFIDA). Resulting DCNs and ICNs are compared for fuels within the normal diesel fuel range of reactivity, as well as very high (∼100) and very low DCNs/ICNs (∼5). Distinct differences between results from various devices are discussed. This is important to consider because some new, high-efficiency advanced compression-ignition (CI) engine combustion strategies operate with more kinetically controlled distributed combustion as opposed to mixing controlled diffusion flames. These advanced combustion strategies may benefit from new fuel chemistries, but current rating methods of CN, DCN, and ICN may not fully describe their performance. In addition, recent evidence suggests ignition delay in modern on-road diesel engines with high-pressure common rail fuel injection systems may no longer directly correlate to traditional CN fuel ratings. Simulated end-of-compression conditions are compared for CN, DCN, and ICN and discussed in the context of modern diesel engines to provide additional insight. Results highlight the potential need for revised and/or multiple fuel test conditions to measure fuel performance for advanced CI strategies.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 857 ◽  
Author(s):  
Liang Lu ◽  
Qilong Xue ◽  
Manyi Zhang ◽  
Liangliang Liu ◽  
Zhongyu Wu

The injection pressure of the gasoline direct injection vehicle is currently developing from the low pressure to the high pressure, and the increase of the injection pressure has brought various damage problems to the high pressure pump structure. These problems should be solved urgently. In this paper, the damage problem of the high pressure pump unloading valve ball in a gasoline direct injection vehicle under high pressure conditions is studied. The theoretical calculation of the force of the pressure relief valve is carried out. Firstly, the equivalent friction coefficient is obtained by decoupling analysis of the statically indeterminate model. Based on this, a finite element model is established. The equivalent stress is obtained by numerical simulation. The equivalent stress is compared with the yield strength of the valve ball material to determine that the valve ball damage is a non-static damage. At the same time, the s-N curve of the probability of destruction of one-millionth of the material of the valve ball is given. Then, the fatigue numerical simulation is performed. A safety factor of 3.66 is obtained. In summary, the high pressure relief valve ball in the direct injection high pressure pump should not be a traditional structural damage under high pressure conditions. In the theoretical calculation, the tangential displacement and radial displacement of the ball are all on the micrometer level. It can be presumed that the surface damage of the valve ball is microscopic damage, such as fretting wear.


Author(s):  
Jingeun Song ◽  
Mingi Choi ◽  
Daesik Kim ◽  
Sungwook Park

The performance of a methane direct injection engine was investigated under various fuel injection timings and injection pressures. A single-cylinder optical engine was used to acquire in-cylinder pressure data and flame images. An outward-opening injector was installed at the center of the cylinder head. Experimental results showed that the combustion characteristics were strongly influenced by the end of injection (EOI) timing rather than the start of injection (SOI) timing. Late injection enhanced the combustion speed because the short duration between the end of injection and the spark-induced strong turbulence. The flame propagation speeds under various injection timings were directly compared using crank-angle-resolved sequential flame images. The injection pressure was not an important factor in the combustion; the three injection pressure cases of 0.5, 0.8, and 1.1 MPa yielded similar combustion trends. In the cases of late injection, the injection timings of which were near the intake valve closing (IVC) timing, the volumetric efficiency was higher (by 4%) than in the earlier injection cases. This result implies that the methane direct injection engine can achieve higher torque by means of the late injection strategy.


2013 ◽  
Vol 465-466 ◽  
pp. 448-452
Author(s):  
Mas Fawzi ◽  
Bukhari Manshoor ◽  
Yoshiyuki Kidoguchi ◽  
Yuzuru Nada

Previous work shows that gas-jet ignition with two-stage injection technique is effective to extend lean combustible ranges of CNG engines. In this report, the robustness of the gas-jet ignition with two-stage injection method was investigated purposely to improve the performance of a lean burn direct injection CNG engine. The experiment was conducted using an engine at speed of 900 rpm, fuel-injection-pressure of 3MPa, equivalence ratio at 0.8, and ignition timing at top dead center. The effect of first injection timing on the test engine performance and exhaust emission was analyzed. First injection timings near the gas-jet ignition produced unstable combustion with occurrence of misfires except at a timing which produced distinctively good combustion with low HC and CO emissions. Computational fluid dynamics was used to provide hindsight of the fuel-air mixture distribution that might be the cause of misfires occurrence at certain injection timings.


Author(s):  
Koji Yamane ◽  
Hiromitsu Sasaki ◽  
Yuzuru Shimamoto

One of the authors has developed a high-pressure fuel injection system using an oil hammer for diesel engines in 1993. In the present study, we applied this novel principle of the fuel injection system to the water-jet cutting system, and a pulsed water jet cutting system by means of water hammer in convergent pipeline caused by strong spool acceleration was developed. The system consisted of a pump having a small size plunger and spool, a convergent pipeline, and automatic injector having a hole-type nozzle with a small orifice. This pump, generating strong compression waves at the convergent pipeline inlet by strong acceleration of spool and plunger, is controlled by the low source oil pressure and electromagnetic valve. The wave propagated in the convergent pipeline is dynamically intensified by water hammering in the pipeline. High pressure is then developed at the nozzle. The injection pressure and injection frequency are fully controllable by the source pressure, and by the valve-opening frequency of the electromagnetic valve (EMPV). A computer simulation demonstrated that an operation and the injection pressure are satisfactory as a water jet cutting system. It is shown that a pressure of 140 MPa is obtained in nozzle inlet by a source pressure of 11.8MPa in experiments. The dimension of the nozzle orifice was determined by visualizing the spray origin using a laser-sheet imaging technique. Stagnation force and its spectrum of water jet on work was measured to evaluate effects of injection period and standoff distance on punching time and area. Practical feasibility of water jet cutting system was demonstrated by cutting/punching tests for soft/no-heating materials or metal plates and by paint removing tests.


Sign in / Sign up

Export Citation Format

Share Document