scholarly journals Overcoming the Efficiency Barrier of Textile Antennas: A Transmission Lines Approach

Proceedings ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 18 ◽  
Author(s):  
Mahmoud Wagih ◽  
Alex S. Weddell ◽  
Steve Beeby

Designing high-efficiency antennas on textiles is fundamental for the development of wirelessly-connected smart garments. Furthermore, large antenna arrays could be used to receive or harvest directional and ambient radio-frequency (RF) power from the environment, thus enabling battery-free e-textiles. The key challenges that are hindering the realisation of high efficiency antennas lie in the dielectric properties of fabrics, the conductivity of their traces, and their low textile thickness. This work numerically and experimentally analyses different RF transmission line structures to establish the limitations of widely utilised antenna designs, such as the microstrip patch, and proposes alternative wearable antenna design based on coplanar waveguide (CPW) structures. It is demonstrated that by using a CPW, insertion losses in a 20 mm line can be minimized by up to 40% for the same substrate, as compared to a microstrip, at 30 GHz. A CPW monopole antenna is demonstrated with more than 80% efficiency on a lossy, thin, poly-cotton substrate. Moreover, it is shown that the efficiency of the CPW monopole is independent of the substrate’s thickness and type of fabric.

In wireless communication era, we need the antennas with low profile, light weight, planar but can meet the characteristics of non-planar structures, with ease of fabrication, flexibility in terms of electromagnetic parameters like radiation pattern, gain, impedance, polarization etc. Microstrip patch antennas, which come at low cost, size, good performance, ease of installation and easy integration to circuits, high efficiency, are suitable in that context. The Principle of slot is used on the patch which decreases the radius of the circular patch antenna, so as to reduce the size. In this work various Ircular microstrip patch antenna arrays are intended for the application of WLAN and Wi-Max at 2.4GHz for the improvement of gain. Single microstrip patch antenna and planar arrays of 1x2 and 2x2 ircular microstrip patch antennas are designed using strip line feeding technique and simulated on FR4 substrate. The planar antenna arrays are simulated using the High Frequency Structure Simulator (HFSS) software version v17.2 and the parameters like gain, return loss, Bandwidth and VSWR are evaluated at 2.4GHz frequency and the same are presented.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yilin Liu ◽  
Kama Huang ◽  
Xia Luo

A novel design of 1×2 and 2×2 circularly polarized (CP) microstrip patch antenna arrays is presented in this paper. The two CP antenna arrays are fed by sequentially rotated coplanar waveguide (CPW) to slotline networks and are processed on 1 mm thick single-layer FR4 substrates. Both of the two arrays are low-profile and lightweight. An air-bridge free CPW-slotline power splitter is appropriately designed to form the feeding networks and realize the two CP antenna arrays. The mechanism of circular polarization in this design is explained. The simulated and measured impedance bandwidths as well as the 3 dB axial ratio bandwidths and the radiation patterns of the two proposed antenna arrays are presented. This proposed design can be easily extended to form a larger plane array with good performance owing to its simple structure.


1999 ◽  
Vol 35 (22) ◽  
pp. 1957 ◽  
Author(s):  
G. Ternent ◽  
S. Ferguson ◽  
Z. Borsosfoldi ◽  
K. Elgaid ◽  
T. Lohdi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3184
Author(s):  
Jing Li ◽  
Yonggang He ◽  
Han Ye ◽  
Tiesheng Wu ◽  
Yumin Liu ◽  
...  

Metasurface-based beam splitters attracted huge interest for their superior properties compared with conventional ones made of bulk materials. The previously reported designs adopted discrete metasurfaces with the limitation of a discontinuous phase profile. In this paper, we propose a dual-band beam splitter, based on an anisotropic quasi-continuous metasurface, by exploring the optical responses under x-polarized (with an electric field parallel to the direction of the phase gradient) and y-polarized incidences. The adopted metasurface consists of two identical trapezoidal silicon antenna arrays with opposite spatial variations that lead to opposite phase gradients. The operational window of the proposed beam splitter falls in the infrared and visible region, respectively, for x- and y-polarized light, resulting from the different mechanisms. When x-polarized light is incident, the conversion efficiency and total transmission of the beam splitter remains higher than 90% and 0.74 within the wavelength range from 969 nm to 1054 nm, respectively. In this condition, each array can act as a beam splitter of unequal power. For y-polarized incidence, the maximum conversion efficiency and transmission reach approximately 100% and 0.85, while the values remain higher than 90% and 0.65 in the wavelength range from 687 nm to 710 nm, respectively. In this case, each array can be viewed as an effective beam deflector. We anticipate that it can play a key role in future integrated optical devices.


Author(s):  
Paolo Baccarelli ◽  
Paolo Burghignoli ◽  
Fabrizio Frezza ◽  
Alessandro Galli ◽  
Paolo Lampariello ◽  
...  

2011 ◽  
Vol 105-107 ◽  
pp. 2188-2193
Author(s):  
Xiao Han ◽  
Xi Chen ◽  
Peng Fei Li

Corona discharge is a kind of self maintained discharges that occurs in the extremely uneven electric field which often happens in the industrial and daily living environments. In this paper, we study the characteristics of corona discharge, especially the ones in the time domain and frequency domain of negative corona discharge. Based on the analyzed characteristics mentioned above, we design and optimize a kind of patch antennas, which has the advantages of small volume compared to the traditional one used to receive the signals generated by corona discharge. This new antenna can be used in the field of security inspection on high voltage transmission lines applied in the industrial applications.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 168
Author(s):  
Madhukant Patel ◽  
Veerendra Singh Jadaun ◽  
Kanhiya Lal ◽  
Piyush Kuchhal

This paper presents design a High Gain Small Size Microstrip Patch Antenna for X-Band applications such as Moving target RADAR sensor, Motion detector, Microwave camera, Ground Penetration RADAR sensors, wall penetration scanners and many medical applications. Now we have to selected circular geometry of micro strip patch antenna because circular geometry overcomes edge effect of antenna. The proposed antenna is designed to operate for X-band at the centre frequency of 10 GHz. The proposed Circular patch antenna is compact and easy to body mount with a high efficiency. The compactness makes it a better choice as compare with other antenna in the X-band. The proposed antenna shows a very sharp return loss of -46 dB at 10 GHz having narrow pattern with a good gain of 4.7 dBi. This enables its use in high directional applications. The paper represents the designing steps, and the simulation result obtained. The software used here for this circular shaped microstrip antenna is IE3D. Various parameters such as gain, power, radiation pattern, and S11 of the antenna are mentioned.


Sign in / Sign up

Export Citation Format

Share Document