scholarly journals Adapting to Engineering Education Vision 2020

Proceedings ◽  
2018 ◽  
Vol 2 (21) ◽  
pp. 1365 ◽  
Author(s):  
Musarat Yasmin ◽  
Farhat Naseem ◽  
Malik Hassan Raza

Interdisciplinary energy research has become inevitable in the context of perceived energy break-point after 2050. Power and energy crisis is a matter of life or death for industry and human race on earth. Oil and natural gas peaking alarms started ringing by the start of the 21st century. Available energy reserves are emptying at of thousands of barrels per second and time to discover new energy sources is being wasted to convince and advocate disciplinarians going for interdisciplinary research approach. We will have to invent new ways of supplying 30% of the global energy demand by 2030 and 60% by 2050. It is not possible without putting the emerging bio, nano, and info technologies together in power and energy research laboratories under interdisciplinary and trans-disciplinary approaches. Electrical engineers badly need the supportive hand of energy scientists and technologists to overcome global power, energy, food, and water crises. Engineers and scientists often find it difficult to tolerate each other and usually end up with duplicate resources without any presentable output which requires motivation to develop teamwork spirit to succeed. This paper unveils the potential urgency for an interdisciplinary research approach concerning embedded energy research barriers and solutions in developing countries. Enhancing power and energy multidisciplinary research is a vital general formula that can be tailored to specific regional conditions to minimize the greenhorn blues to run local and global interdisciplinary research programs.

2010 ◽  
Vol 130 (6) ◽  
pp. 336-339
Author(s):  
Masayuki YODA ◽  
Kazuto YUKITA ◽  
Yuki OHSHIMA ◽  
Kiyonori BAN ◽  
Maki FUJINAGA

2018 ◽  
Vol 3 (2) ◽  
pp. 1-6
Author(s):  
Raji A. Abimbola

In recent years, Nigeria’s power generation output from all the available energy sources such as coal, natural gas, and water, is far from the expected number required to meet the energy demand of her teeming populace. This culminates in long hours of power outages frequently experienced in many parts of the country. However, there appears to be no end in sight to the problem. Alternatively, few citizens who can afford generator have wittingly resulted to the use of this device to supply power. Generator set has unavoidable disadvantages of high maintenance or running cost, noise pollution, and release of dangerous gases that pose danger to human lives. Evidently, that solution is risky and inadequate. Power inverter is an alternative and better means of generating electricity with little or no maintenance cost, environment or eco- friendly and poses no risk to human health. It is in that connection that we develop in this work 2KVA sine wave inversion system which produces sinusoidal A.C. signal required in homes for lightning and powering electronic gadgets like television, radio, refrigerator, Air conditioner etc. It is an improvement over square wave and modified sine wave inversion systems that generate digital approximations of A.C. signal. An interesting but new addition is the use of LCD display, interfaced with PIC16F688 microcontroller for showing the design specifications of the inverter.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 393
Author(s):  
Alexander M. Laptev ◽  
Jürgen Hennicke ◽  
Robert Ihl

Spark Plasma Sintering (SPS) is a technology used for fast consolidation of metallic, ceramic, and composite powders. The upscaling of this technology requires a reduction in energy consumption and homogenization of temperature in compacts. The application of Carbon Fiber-Reinforced Carbon (CFRC) insulating plates between the sintering setup and the electrodes is frequently considered as a measure to attain these goals. However, the efficiency of such a practice remains largely unexplored so far. In the present paper, the impact of CFRC plates on required power, total sintering energy, and temperature distribution was investigated by experiments and by Finite Element Modeling (FEM). The study was performed at a temperature of 1000 °C with a graphite dummy mimicking an SPS setup. A rather moderate influence of CFRC plates on power and energy demand was found. Furthermore, the cooling stage becomes considerably longer. However, the application of CFRC plates leads to a significant reduction in the axial temperature gradient. The comparative analysis of experimental and modeling results showed the good capability of the FEM method for prediction of temperature distribution and required electric current. However, a discrepancy between measured and calculated voltage and power was found. This issue must be further investigated, considering the influence of AC harmonics in the DC field.


Author(s):  
Stephen M. Fiore

This symposium provides a complementary set of papers exploring frameworks and models for developing artificial social intelligence (ASI) for teams. ASI consists of components of social cognition that support teamwork and more general interpersonal interactions. Although AI is rapidly evolving and fielded in a variety of operational settings, the implementation of such systems is vastly outpacing our ability to understand how to design and develop technologies appropriately. This symposium is meant to help redress this gap. Consisting of scholars representing the cognitive, computational, and organizational sciences, the papers discuss how they integrate theory and methods to inform development of agents capable of complex collaborative processes. Collectively, these papers synthesize perspectives across disciplines in support of an interdisciplinary research approach for ASL The goal is to contribute to research and development in the area of Human- AI- Robot Teaming effectiveness.


2021 ◽  
Author(s):  
S. Rajkumar ◽  
S Gowri ◽  
S Dhineshkumar ◽  
Princy Merlin Johnson ◽  
Anandaraj Sathiyan

With the fast exhaustion of fossil fuels, the need for new energy storage materials to meet the world's massive energy demand has inclined tremendously. Inorganic components with conducting polymer based...


2018 ◽  
Vol 10 (10) ◽  
pp. 3560 ◽  
Author(s):  
Xian Zhao ◽  
Siqi Wang ◽  
Xiaoyue Wang

In order to satisfy the increasing energy demand and deal with the environmental problem caused by the conventional energy vehicle; the new energy vehicle (NEV), especially the electric vehicle (EV), has attracted increasing attention and the corresponding research has developed rapidly in recent years. The electric vehicle requires a battery with high energy density and frequent charging. In order to ensure high performance of the electric vehicle; the reliability of its charging system is extremely important. In this paper; an overview of the research on electric vehicle charging system reliability from 1998 to 2017 is presented from a bibliometric perspective. This study provides a comprehensive analysis of the current research climate and the emerging trends from the following four aspects: basic characteristics of publication outputs; including annual publication outputs and document types; collaboration analysis of countries/territories; institutions and authors; co-citation analysis of cited authors and cited references; co-occurrence analysis of subjects and keywords. By using CiteSpace; the collaboration relationship; co-citation and co-occurrence networks are shown clearly. According to the analysis results; studies in this research field will keep developing rapidly in the near future and several future research directions are proposed in the conclusions.


Author(s):  
Andrei Mircea Bolboaca

Covering the energy demands under environmental protection and satisfying economic and social restrictions, together with decreasing polluting emissions, are impetuous necessities, considering that over half of the pollutant emissions released in the environment are the effect of the processes of electricity and heat production from the classic thermoelectric powerplant. Increasing energy efficiency and intensifying the use of alternative resources are key objectives of global policy. In this context, a range of new energy technologies has been developed, based on alternative energy conversion systems, which have recently been used more and more often for the simultaneous production of electricity and heat. An intensification of the use of combined energy production correlated with the tendency towards the use of clean energy resources can be helpful in achieving the global objectives of increasing fuel diversity and ensuring energy demand. The chapter aims at describing the fuel cell technology, in particular those of the SOFC type, used in the CHP for stationary applications.


Sign in / Sign up

Export Citation Format

Share Document