scholarly journals Finite Element Analysis of Composite Laminated Timber (CLT)

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1454
Author(s):  
Juan Enrique Martínez-Martínez ◽  
Mar Alonso-Martínez ◽  
Felipe Pedro Álvarez Rabanal ◽  
Juan José del Coz Díaz

In the research for sustainable construction, cross-laminated timber (CLT) has gained popularity and become a widely used engineered timber product. However, there are few numerical studies of the structural behaviour of CLT. Among other issues, the orthotropic properties of CLT complicate finite element analysis (FEA). This paper presents a finite element model (FEM) to predict the structural behaviour of CLT beams subjected to sustained flexural loading. This numerical model includes a material model based on the orthotropic material properties of different timber species. Furthermore, the orientation and the properties of each layer are considered. Most of the previous studies simulate CLT beams as a homogeneous material. However, in this work the CLT beam is modelled as a composite material made up of five layers with different orientations and properties. Bonded contacts are used to define the interaction between layers. In addition, nonlinearities, such as large displacement, are used to simulate the behaviour of CLT beams. The model provides the load-displacement relationship and stress concentration. Tsai-Wu failure criteria is used in the simulation to predict the failure modes of the CLT beams studied.

2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012020
Author(s):  
A W Ahmed-Abdullamohamed ◽  
M K Kamarudin ◽  
M M. Yussof

Abstract The demand for transparency has increased in the construction industry and contemporary architecture over the last decade. The prior researchers focused on glass columns because their uniqueness and transparent characteristics generate an impressive visual feature. Past studies on structural glass entailed numerous experimental investigations, but FEA was applied in a few investigation exercises. This study aims to validate the experimental data and analyse the crack in the tubular glass column and determine the effectiveness of different slenderness ratios of the glass column. This study investigated the column structural behaviour under compression with different geometrical dimensions of hollow section laminated glass columns to determine their load-carrying capacity, buckling performance, and failure mechanism. Finite element analysis using the explicit method was performed by using ABAQUS. The study found that the failure mechanisms depend on the slenderness ratio classified into two failure modes, either buckling or crushing. The glass column failed due to buckling when the slenderness ratio is more than 40, while it failed due to crushing when the slenderness ratio is less than 40. The finite element analysis did not correlate perfectly with the experimental data since the FEA underestimating the glass performance.


Author(s):  
Y. J. Cho ◽  
M. B. Han ◽  
J. S. Bae ◽  
I. J. Choi ◽  
D. S. Choi ◽  
...  

Abstract Micro bump in semiconductor devices is an element to connect silicon dies with through-silicon via to be stacked on each other. The failure of these micro bumps is directly related to the reliability of semiconductors. Of the various mechanical tests, a shear test is commonly used to evaluate mechanical reliability because it provides relatively simple and reliable evaluation data. This paper investigated the failure modes of micro bump due to the structure of micro bumps and tip speed through finite element analysis and shear test. A shear test was conducted for four structures of micro bumps with the radius of 25 μm using a Dage4000+ bond tester under two tip speeds. A finite element model representing the shear test was developed by ANSYS and the analysis was conducted under the same conditions as the experiment. It shows that tungsten via are effective in increasing shear strength of micro bump. Moreover, it also proposes a robust design to increase shear strength of a micro bump.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


Author(s):  
Luiz T. Souza ◽  
David W. Murray

The paper presents results for finite element analysis of full-sized girth-welded specimens of line pipe and compares these results with the behavior exhibited by test specimens subjected to constant axial force, internal pressure and monotonically increasing curvatures. Recommendations for the ‘best’ type of analytical finite element model are given. Comparisons between the behavior predicted analytically and the observed behavior of the experimental test specimens are made. The mechanism of wrinkling is explained and the evolution of the deformed configurations for different wrinkling modes is examined. It is concluded that the analytical tools now available are sufficiently reliable to predict the behavior of pipe in a manner that was not previously possible and that this should create a new era for the design and assessment of pipelines if the technology is properly exploited by industry.


2003 ◽  
Vol 15 (02) ◽  
pp. 82-85 ◽  
Author(s):  
SHYH-CHOUR HUANG ◽  
CHANG-FENG TSAI

This paper presents results from using a 3-dimensional finite element model to assess the stress distribution in the bone, in the implant and in the abutment as a function of the implant's diameter and length. Increasing implant diameter and length increases the stability of the implant system. By using a finite element analysis, we show that implant length does not decrease the stress distribution of either the implant or the bone. Alternatively, however implant diameter increases reduce the stresses. For the latter case, the contact area between implant and bone is increased thus the stress concentration effect is decreased. Also, with increased implant diameter the bone loss is decreased and as a consequence the success rate is improved.


2013 ◽  
Vol 774-776 ◽  
pp. 25-29
Author(s):  
Cong Fang Hu ◽  
Yuan Qiang Tan

Based on the tandem sealing structure at the end of the shaft,a finite element model of rubber O-rings has been established and the sealing performance of rubber O-ring has been analyzed. There is an un-uniform compression among these O-rings which lead to the sealing failure. Under different friction factors, several groups of the rubber O-rings have been analyzed, finding that the friction factor is the reason of un-uniform compression. The effect of different average compression rate has been investigated, which has been integrated in the sealing criteria for the tandem O-rings, providing a reference for the optimization of tandem sealing structure at the end of the shaft. According to the sealing criteria for a single O-ring, the sealing criteria for the tandem O-rings is built.


Sign in / Sign up

Export Citation Format

Share Document