Attentional Modulation of the Emotional Expression Processing Studied with ERPs and sLORETA

2014 ◽  
Vol 28 (1) ◽  
pp. 32-46 ◽  
Author(s):  
Eligiusz Wronka ◽  
Wioleta Walentowska

Recent ERP studies demonstrate that the processing of facial emotional expression can be modulated by attention. The aim of the present study was to investigate the neural correlates of attentional influence on the emotional expression processing at early stages. We recorded ERP responses to facial stimuli containing neutral versus emotional expression in two different conditions. The first task was to discriminate facial expressions, while the second task was to categorize face gender. Enhanced positivity at occipital and occipito-temporal locations between 110 and 170 ms poststimulus was elicited by facial stimuli presented in the expression task when compared to the gender task. This effect temporally overlapped with the P1 and N170 components, which reflect the early stages of face processing. To localize the sources of the brain activity underlying observed attentional modulation, we used Standardized Low Resolution Electromagnetic Tomography. Enhanced activity within the extrastriate cortex for the expression task was obtained as the reflection of early ERP effect. Additionally, we found stronger activation within the superior temporal and the fusiform gyrus of the right hemisphere in the expression task when compared to the gender task. Our findings undoubtedly confirm that early stages of the emotional expression processing can be modified by top-down attention.

Author(s):  
A. G. Ganiev, Z. Sh. Abdunazarova

The article provides information about the human brain, including its energy consumption, the functional functions of its parts, the biophysics of the sensory channels of the visual mechanism. The channels of movement of information through the neural fibers of the brain, the description of "unusual" ideas that lead to new and "creative thinking", the importance of the method of "comparative learning" in the development of "imagination" and "creative thinking" were discussed. The “specialty-related” mind map of the cerebral hemispheres serves to visualize and develop the activity of the right hemisphere of the brain, which is responsible for “creative thinking”. To activate the right hemisphere of the brain, it is recommended to use emotional "mind map", Uzbek folk tales, folk sports, folklore. The "mind map" of the sensory channels encourages feedback on the functioning of the human sensory organs, the mechanism of information reception, and opportunities to increase the efficiency of this process. It serves to visualize the mechanism by which ‘imagination’ is formed.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Stefano F. Cappa

The study of the brain mechanisms involved in narrative production and comprehension has made significant progress in the last decade. The paper reviews some of the available evidence, focusing on functional imaging studies aimed to assess brain activity in normal subjects, while they listen to narratives or watching movies. The complex brain networks engaged by these complex tasks extend beyond the classical language areas, by involving the right hemisphere and hippocampal structures. These results provide initial insights into the mechanisms involved in narrative cohesion, situation model construction and distinction/integration of narrative elements.


Author(s):  
Michio Sugeno ◽  
◽  
Takahiro Yamanoi ◽  

This paper discusses brain activity during the understanding of sentences from the perspective of Systemic Functional Linguistics. We focus on ideational meaning (propositional meaning in an ordinary sense) and interpersonal meaning (as is typically seen in honorific expressions). The present study is an experimental exploration of the spatiotemporal pathways of neuronal activation. Japanese sentences containing and not containing honorific expressions are compared in electroencephalography experiments. In these experiments, the sentences without honorific expressions have ideationalmeaning, but those with honorific expressions have both ideational and interpersonal meanings. Through the use of the equivalent current dipole source localization method, the spatiotemporal processes of activation of the brain are analyzed. There is a single pathway during the understanding of the sentences without honorific expressions; this pathway is mainly observed in the left hemisphere. On the other hand, there are three pathways in the case of the sentences with honorific expressions, two of which are observed in the right hemisphere. The remaining pathway is the same as the aforementioned single pathway. This fact strongly suggests that the common pathway is concerned with processing ideational meaning. The other two pathways observed during understanding of the sentences with honorific expressions are considered to be related to processing interpersonal meaning.


2020 ◽  
Author(s):  
Larissa Bastos Tavares ◽  
Idaliana Fagundes de Souza ◽  
Bartolomeu Fagundes de Lima Filho ◽  
Kim Mansur Yano ◽  
Juliana Maria Gazzola ◽  
...  

Abstract Dual-task activities are common in daily life and have greater motor/cognitive demands. These are conditions that increase the risk of older adult falls. Falls are a public health problem. Brain mapping during dual-task activities can inform which therapeutic activities stimulate specific brain areas, improving functionality, and decreasing dependence and the risk of falls. The objective of the study was to characterize the brain activity of healthy older adults while performing a dual-task activity called the Functional Gait Test (FGT). Method : This observational study included 30 older adults aged 65 to 75 years, and it was approved by the institutional review board. The FGT consists of walking following a sequence of numbers (simple task), and a sequence of alternating letters and numbers (complex task). During the activity, the subjects had their cortical activation pattern measured using the Emotiv EPOC® electroencephalogram. Complete data was obtained for analysis on 13 participants. The data was analyzed using descriptive statistics (mean and standard deviation), and paired T-tests to compare the brain activity during the conditions (simple vs. complex task). Results : Alpha brain waves were activated in the right and left hemispheres during the simple task, while Alpha brain waves’ activation during the complex task was predominant in the right hemisphere. However, the differences were not statistically significant. The Betha waves had predominant activation in the left hemisphere during the simple task, and predominant activation in the right hemisphere during the complex task. The difference was statistically significant in 11 out of the 14 channels evaluated ( P <0.04). Conclusion: The results corroborates the increased complexity of dual-tasks due to the predominant activation of the right hemisphere, which is related to motor learning process and new stimulus processing.


1994 ◽  
Vol 10 (4-5) ◽  
pp. 561-571
Author(s):  
Gunnar Heuser ◽  
Ismael Mena ◽  
Francisca Alamos

Exposures to neurotoxic chemicals such as pesticides, glues, solvents, etc. are known to induce neurologic and psychiatric symptomatology. We report on 41 patients 16 young patients (6 males, 10 females, age 34 8 yrs.) and 25 elderly patients (9 males, 16 females, age 55 7 yrs). Fifteen of them were exposed to pesticides, and 29 to solvents. They were studied with quantitative and qualitative analysis of regional cerebral bood flow (rCBF), performed with 30 mCi of Xe-133 by inhalation, followed by 30 mCi of Tc-HMPAO given intravenously. Imaging was performed with a brain dedicated system, distribution of rCBF was assessed with automatic ROI definition, and HMPAO was normalized to maximal pixel activity in the brain. Results of Xe rCBF are expressed as mean and S.D. in ml/min/100g, and HMPAO as mean and S.D. uptake per ROI, and compared with age-matched controls 10 young and 20 elderly individuals. Neurotoxics HMPAO Uptake Young Elderly R. Orbital frontal R. Dorsal frontal .70 .66 p < 0.05 R. Temporal .64 p < 0.001 R. Parietal .66 .66 We conclude that patients exposed to chemicals present with diminished CBF, worse in the right hemisphere, with random presentation of areas of hypoperfusion, more prevalent in the dorsal frontal and parietal lobes. These findings are significantly different from observations in patients with chronic fatigue and depression, suggesting primary cortical effect, possibly due to a vasculitis process.


2020 ◽  
pp. 1-21
Author(s):  
Alexandra Anagnostopoulou ◽  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelia Romanopoulou ◽  
Vasiliki Zilidou ◽  
...  

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain’s intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


This is a data visualization art piece using 10 seconds of mind waves recordings of the human, captured with EEG sensor.10 seconds of Alpha, Beta, Gamma & Theta brain waves while meditating are recorded, the different wave channels are categorized to state when the right brain representing artistic brain activity, isolating the ranges for each channel when the brain channels were more meditating and imaginative. Based on the waves of the brain obtained, we will be able to deduce few attributes such as attention span and mood. The moods we will be trying to assess and display here the level of happiness, sadness, anger along with attention span and meditation level (Concentration level).


2021 ◽  
Vol 19 (3) ◽  
pp. 17-25
Author(s):  
Dr. Sohail Adnan ◽  
Dr. Mubasher Shah ◽  
Dr. Syed Fahim Shah ◽  
Dr. Fahad Naim ◽  
Dr. Akhtar Ali ◽  
...  

Background: Consciousness has remained a difficult problem for the scientists to explore its relationship to the brain activity. This is the first paper that presents the significance of focal areas of the cerebral cortex for consciousness. Objectives: To determine if consciousness is produced by the activity of the whole brain or one of its focal areas. Methods: We have performed a prospective cross-sectional study in eighty patients of acute ischemic stroke. The neurovascular territory of the middle cerebral artery (MCA) was sectioned into four similar areas. The association of any of these focal areas to consciousness was observed after their dysfunction with ischemic strokes. Results: Of the eighty patients, 57.5 % were males and 42.5 % were females. Mean age was 63 years ± 7 SD. The righthanded patients were 90 % (72) of the whole sample. Focal areas of the right MCA were generally less prone to consciousness disorder. Average statistics of the focal infarctions of the right MCA showed no tendency for consciousness disorder on the Glasgow coma scale (GCS) [Mean GCS of all focal areas; 14.5, SD; 0.71, 95 % CI; 14.27 to 14.72, P= 0.0000004]. Altered consciousness with focal infarctions of the territory of left MCA was also less likely [Mean GCS of all focal areas; 14.2, SD; 1.01, 95 % CI; 13.88 to 14.51, P= 0.0004]. Conclusion: Consciousness is not determined by the activity of a focal area of the cerebral cortex. Perhaps, we get our consciousness from the activity of “Neuronal Network of Coordination”.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb232637
Author(s):  
Jiangyan Shen ◽  
Ke Fang ◽  
Ping Liu ◽  
Yanzhu Fan ◽  
Jing Yang ◽  
...  

ABSTRACTVisual lateralization is widespread for prey and anti-predation in numerous taxa. However, it is still unknown how the brain governs this asymmetry. In this study, we conducted behavioral and electrophysiological experiments to evaluate anti-predatory behaviors and dynamic brain activities in Emei music frogs (Nidirana daunchina), to explore the potential eye bias for anti-predation and the underlying neural mechanisms. To do this, predator stimuli (a model snake head and a leaf as a control) were moved around the subjects in clockwise and anti-clockwise directions at steady velocity. We counted the number of anti-predatory responses and measured electroencephalogram (EEG) power spectra for each band and brain area (telencephalon, diencephalon and mesencephalon). Our results showed that (1) no significant eye preferences could be found for the control (leaf); however, the laterality index was significantly lower than zero when the predator stimulus was moved anti-clockwise, suggesting that left-eye advantage exists in this species for anti-predation; (2) compared with no stimulus in the visual field, the power spectra of delta and alpha bands were significantly greater when the predator stimulus was moved into the left visual field anti-clockwise; and, (3) generally, the power spectra of each band in the right-hemisphere for the left visual field were higher than those in the left counterpart. These results support that the left eye mediates the monitoring of a predator in music frogs and lower-frequency EEG oscillations govern this visual lateralization.


Sign in / Sign up

Export Citation Format

Share Document