scholarly journals Ion Accelerator Facility of the Wakasa Wan Energy Research Center for the Study of Irradiation Effects on Space Electronics

2021 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Satoshi Hatori ◽  
Ryoya Ishigami ◽  
Kyo Kume ◽  
Kohtaku Suzuki

The core facility of the Wakasa Wan Energy Research Center (WERC) consists of three ion accelerators: a synchrotron, a tandem accelerator and an ion-implanter. Research on the irradiation effects using these accelerators has been performed on space electronics such as solar cells, radiation detectors, image sensors and LSI circuits. In this report, the accelerator facility and ion-irradiation apparatuses at WERC are introduced, focusing on the research on irradiation effects on space electronics. Then, some recent results are summarized.

Author(s):  
M. W. Bench ◽  
I. M. Robertson ◽  
M. A. Kirk

Transmission electron microscopy experiments have been performed to investigate the lattice damage created by heavy-ion bombardments in GaAs. These experiments were undertaken to provide additional insight into the mechanisms by which individual amorphous zones and eventually amorphous layers are created. To understand these mechanisms, the structure of the defects created as a function of material, irradiating ion, dose, dose rate, and implantation tenperature have been studied using TEM. Also, the recovery of the crystalline structure by annealing has been investigated.These experiments were performed at the High-Voltage Electron Microscope - Ion Accelerator Facility at Argonne National Laboratory. This facility consists of an HVEM which has been interfaced with two ion accelerators. This coupling, plus the availability of several specimen stages permits ion irradiations to be performed in the specimen chamber of the microscope at controlled temperatures from 10 to 1000 K.


2015 ◽  
Vol 25 (03n04) ◽  
pp. 227-233 ◽  
Author(s):  
Keisuke Yasuda

A microbeam system at the Wakasa Wan Energy Research Center is presented. A magnetic quadrupole doublet is used for the focusing of ion beams from a 5 MV tandem accelerator. Micro-PIXE and micro-PIGE measurements both in the vacuum and air are applicable with this system. Examples of the measurements for tooth and tea leaves are also presented.


2014 ◽  
Vol 1645 ◽  
Author(s):  
S E Donnelly ◽  
G Greaves ◽  
J A Hinks ◽  
C J Pawley ◽  
M-F Beaufort ◽  
...  

ABSTRACTThe MIAMI* facility at the University of Huddersfield is one of a number of facilities worldwide that permit the ion irradiation of thin foils in-situ in a transmission electron microscope. MIAMI has been developed with a particular focus on enabling the in-situ implantation of helium and hydrogen into thin electron transparent foils, necessitating ion energies in the range 1 – 10 keV. In addition, however, ions of a variety of species can be provided at energies of up to 100 keV (for singly charged ions), enabling studies to focus on the build up of radiation damage in the absence or presence of implanted gas.This paper reports on a number of ongoing studies being carried out at MIAMI, and also at JANNuS (Orsay, France) and the IVEM / Ion Accelerator Facility (Argonne National Lab, US). This includes recent work on He bubbles in SiC and Cu; the former work concerned with modification to bubble populations by ion and electron beams and the latter project concerned with the formation of bubble super-lattices in metals.A study is also presented consisting of experiments aimed at shedding light on the origins of the dimensional changes known to occur in nuclear graphite under irradiation with either neutrons or ions. Single crystal graphite foils have been irradiated with 60 keV Xe ions in order to create a non-uniform damage profile throughout the foil thickness. This gives rise to varying basal-plane contraction throughout the foil resulting in almost macroscopic (micron scale) deformation of the graphite. These observations are presented and discussed with a view to reconciling them with current understanding of point defect behavior in graphite.*Microscope and Ion Accelerator for Materials Investigations


Author(s):  
L.M. Wang ◽  
R.C. Birtcher

Although it was initially thought that irradiation could not further damage an amorphous material, an anomalous ion-induced morphological instability on the surface of amorphous Ge has been reported previously by several authors. In this study, the structural and morphological changes of Ge were monitored during 1.5 MeV Kr ion irradiation by in situ TEM to obtain insight into the damage evolution in ion-irradiated Ge.The in situ study was performed on the HVEM-Tandem Accelerator Facility at Argonne National Laboratory. The facility consists of a modified Kratos/AEI EM7 high voltage electron microscope (HVEM) and a 2 MV tandem ion accelerator. The samples were jet-polished polycrystalline Ge (99.99999 at. % pure) TEM discs with grain size > 5 μm in dimension. The Kr ion irradiation was carried out at room temperature, and the electron energy of the HVEM was 300 kV. According to a TRIM computer simulation, over 99% of the Kr ions penetrate through the electron transparent areas of the Ge sample, and a dose of 1×1015 Kr/cm2 created an average of ∽4 displacements per atom and an average Kr concentration of ∽12 appm in the observation region of the sample.


1995 ◽  
Vol 35 (3) ◽  
pp. 603-608 ◽  
Author(s):  
S.R. Anderson ◽  
R.D. Schrimpf ◽  
K.F. Galloway ◽  
J.L. Titus

1999 ◽  
Vol 59 (6) ◽  
pp. 3981-3992 ◽  
Author(s):  
A. Meldrum ◽  
S. J. Zinkle ◽  
L. A. Boatner ◽  
R. C. Ewing

Sign in / Sign up

Export Citation Format

Share Document