scholarly journals An Investigation into Current Sand Control Methodologies Taking into Account Geomechanical, Field and Laboratory Data Analysis

Resources ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 125
Author(s):  
Dmitry Tananykhin ◽  
Maxim Korolev ◽  
Ilya Stecyuk ◽  
Maxim Grigorev

Sand production is one of the major issues in the development of reservoirs in poorly cemented rocks. Geomechanical modeling gives us an opportunity to calculate the reservoir stress state, a major parameter that determines the stable pressure required in the bottomhole formation zone to prevent sand production, decrease the likelihood of a well collapse and address other important challenges. Field data regarding the influence of water cut, bottomhole pressure and fluid flow rate on the amount of sand produced was compiled and analyzed. Geomechanical stress-state models and Llade’s criterion were constructed and applied to confirm the high likelihood of sanding in future wells using the Mohr–Coulomb and Mogi–Coulomb prototypes. In many applications, the destruction of the bottomhole zone cannot be solved using well mode operations. In such cases, it is necessary to perform sand retention or prepack tests in order to choose the most appropriate technology. The authors of this paper conducted a series of laboratory prepack tests and it was found that sanding is quite a dynamic process and that the most significant sand production occurs in the early stages of well operation. With time, the amount of produced sand decreases greatly—up to 20 times following the production of 6 pore volumes. Finally, the authors formulated a methodological approach to sand-free oil production.

2015 ◽  
Vol 55 (1) ◽  
pp. 215 ◽  
Author(s):  
Sadegh Asadi ◽  
Khalil Rahman ◽  
Hoanh V. Pham ◽  
Thao Le Minh ◽  
Andy Butt

Sand production assessment is essential from the early stages of field development planning for completion design and later for the production optimisation. Unconsolidated and weakly consolidated sandstones are prone to fail at a low flowing bottomhole pressure during hydrocarbon production. To predict the critical flowing bottomhole pressure or a safe drawdown, a geomechanical model that integrates in situ stresses, rock mechanical properties, the well trajectory, reservoir pressure, the production plan and the depletion trend is required. For a given stress field, well trajectory and production plan, the rock strength index is a key parameter that has significant impacts on the sanding risk. This paper presents the results of a study investigating the potential of sand production from primary and secondary target reservoir rocks in a petroleum field in offshore Vietnam. A poroelastic analytical approach was used to investigate if sands will be produced from the open holes or perforations. The criterion of sanding was formulated to be the effective maximum principal stress to be greater than the effective rock strength. Observations of sanding or no sanding during drill stem tests (DSTs) were used to calibrate the sanding model to be used for sanding predictions of future production wells. The effects of reservoir pressure depletion on sanding risks were investigated using the stress arching theory. Since the water production from target reservoirs was observed in the nearby fields, the analysis was performed to investigate the effects of water production on rock weakening that may cause higher risks of sanding. The results showed low risks of sanding for majority of the reservoirs, with drawdowns as high as 3,000 psi at the original reservoir pressure. The drawdown was, however, required to reduce to 500 psi to produce sand-free after depleting the reservoir by more than 90% of its original pressure. The results of this study led to the decision of completing the wells without using sand control equipment and to avoid sanding by controlling drawdown for the life of the well.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Son Tung Pham

This paper aims to develop a numerical model that can be used in sand control during production phase of an oil and gas well. The model is able to predict not only the onset of sand production using critical bottom hole pressure inferred from geomechanical modelling, but also the mass of sand produced versus time as well as the change of porosity versus space and time using hydromechanical modelling. A detailed workflow of the modelling was presented with each step of calculations. The empirical parameters were calibrated using laboratory data. Then the modelling was applied in a case study of an oilfield in Cuu Long basin. In addition, a sensitivity study of the effect of drawdown pressure was presented in this paper. Moreover, a comparison between results of different hydromechanical models was also addressed. The outcome of this paper demonstrated the possibility of modelling the sand production mass in real cases, opening a new approach in sand control in petroleum industry.


2009 ◽  
Author(s):  
Daniel Daparo ◽  
Luis Soliz ◽  
Eduardo Roberto Perez ◽  
Carlos Iver Vidal Saravia ◽  
Philip Duke Nguyen ◽  
...  

2018 ◽  
Vol 876 ◽  
pp. 181-186
Author(s):  
Son Tung Pham

Sand production is a complicated physical process depending on rock mechanical properties and flow of fluid in the reservoir. When it comes to sand production phenomenon, many researchers applied the Geomechanical model to predict the pressure for the onset of sand production in the reservoir. However, the mass of produced sand is difficult to determine due to the complexity of rock behavior as well as fluid behavior in porous media. In order to solve this problem, there are some Hydro – Mechanical models that can evaluate sand production rate. As these models require input parameters obtained by core analysis and use a large empirical correlation, they are still not used popularly because of the diversity of reservoirs behavior in the world. In addition, the reliability of these models is still in question because no comparison between these empirical models has been studied. The onset of sand production is estimated using the bottomhole pressure that makes the maximum effective tangential compressive stress equal or higher than the rock strength (failure criteria), which is usually known as critical bottomhole pressure (CBHP). Combining with Hydro – Mechanical model, the main objective of this work aims to develop a numerical model that can solve the complexity of the governing equations relating to sand production. The outcome of this study depicts sand production rate versus time as well as the change of porosity versus space and time. In this paper, the Geomechanical model coupled with Hydro – Mechanical model is applied to calibrate the empirical parameters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250466
Author(s):  
Fahd Saeed Alakbari ◽  
Mysara Eissa Mohyaldinn ◽  
Mohammed Abdalla Ayoub ◽  
Ali Samer Muhsan ◽  
Ibnelwaleed A. Hussein

Sand management is essential for enhancing the production in oil and gas reservoirs. The critical total drawdown (CTD) is used as a reliable indicator of the onset of sand production; hence, its accurate prediction is very important. There are many published CTD prediction correlations in literature. However, the accuracy of most of these models is questionable. Therefore, further improvement in CTD prediction is needed for more effective and successful sand control. This article presents a robust and accurate fuzzy logic (FL) model for predicting the CTD. Literature on 23 wells of the North Adriatic Sea was used to develop the model. The used data were split into 70% training sets and 30% testing sets. Trend analysis was conducted to verify that the developed model follows the correct physical behavior trends of the input parameters. Some statistical analyses were performed to check the model’s reliability and accuracy as compared to the published correlations. The results demonstrated that the proposed FL model substantially outperforms the current published correlations and shows higher prediction accuracy. These results were verified using the highest correlation coefficient, the lowest average absolute percent relative error (AAPRE), the lowest maximum error (max. AAPRE), the lowest standard deviation (SD), and the lowest root mean square error (RMSE). Results showed that the lowest AAPRE is 8.6%, whereas the highest correlation coefficient is 0.9947. These values of AAPRE (<10%) indicate that the FL model could predicts the CTD more accurately than other published models (>20% AAPRE). Moreover, further analysis indicated the robustness of the FL model, because it follows the trends of all physical parameters affecting the CTD.


2021 ◽  
Author(s):  
Emily Ako ◽  
Erasmus Nnanna ◽  
Odumodu Somtochukwu ◽  
Akinmade Moradeke

Abstract Chemical Sand Consolidation (SCON) has been used as a means of downhole sand control in Niger Delta since the early 70s. The countries where SCON has been used include Nigeria (Niger Delta), Gabon (Gamba) and UK (North Sea). SCON provides grain-to-grain cementation and locks formation fines in place through the process of adsorption of the sand grains and subsequent polymerization of the resin at elevated well temperatures. The polymerized resin serves to consolidate the surfaces of the sand grain while retaining permeability through the pore spaces. In a typical Niger Delta asset, over 30% of the wells may be completed with SCON. A high percentage are still producing without failure since installation from1970s. Where the original SCON jobs have failed, re-consolidation has also been carried out successfully. Chemical Sand Consolidation development has evolved over the years from: Eposand 112A and B, Eposand 212A and B, Wellfix 2000, Wellfix 3000, Sandstop (resin based), Sandtrap 225, 350 & 500 (resin based) and lately Sandtrap 225,350, 500 (solvent based) and Sandtrap ABC (aqueous based). There have been mixed results experienced with the deployment of either of the latest recipes of SCON. This was due to the fact that the conventional deployment work procedure was followed with the tendency for one-size-fits-all approach to the treatment. This paper details the challenges faced with sand production in ARAMU037, the previous interventions and how an integrated approach to the design and delivery of the most recent intervention restored the way to normal production. The well has now produced for about 2 years with minimal interruption with the activity paying out in less than 6 months. The paper also recommends the best practice for remedial sand control especially for wells in mature assets.


1997 ◽  
Author(s):  
J. Tronvoll ◽  
E. Papamichos ◽  
A. Skjaerstein ◽  
F. Sanfilippo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document