scholarly journals Software Sensors for Order Tracking Applied to Permanent Magnet Synchronous Generator Diagnostics: A Comparative Study

Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 59
Author(s):  
Laurent Rambault ◽  
Abdallah Allouche ◽  
Erik Etien ◽  
Anas Sakout ◽  
Thierry Doget ◽  
...  

The paper deals with software sensors which facilitates the diagnosis of electrical machines in non-stationary operating conditions. The technique targeted is order tracking for which different techniques exist to estimate the speed and angle of rotation. However, from a methodological point of view, this paper offers a comparison of several methods in order to evaluate their performance from tests on a test bench. In addition, to perform the tests, it is necessary to initialize the different methods to make them work correctly. In particular, an identification technique is proposed as well as a way to facilitate initialization. The example of this paper is that of a synchronous generator. Angular sampling allows the spectrum to be stationary and the interpretation of a possible defect. The realization of the angular sampling and the first diagnostic elements require the knowledge of two fundamental quantities: the speed of rotation and the angular position of the shaft. The estimation of the rotation speed as well as the estimation of the angular position of the shaft are carried out from the measurement of an electric current (or three electric currents and three voltages). Four methods are proposed and evaluated to realize software sensors: identification technique, PLL (Phase Locked Loop), Concordia transform and an observer. The four methods are evaluated on measurements carried out on a test bench. The results are discussed from the diagnosis of a mechanical fault.

2019 ◽  
Vol 42 (3) ◽  
pp. 586-597 ◽  
Author(s):  
Li Shengquan ◽  
Li Juan ◽  
Tang Yongwei ◽  
Shi Yanqiu ◽  
Cao Wei

This paper deals with the critical issue in a direct-driven permanent magnet synchronous generator (PMSG)-based wind energy conversion system (WECS): the rejection of internal and external disturbances, including the uncertainties of external environment, rapid wind speed changes in the original parameters of the generator caused by mutative operating conditions. To track the maximum power, a maximum power point tracking strategy based on model predictive controller (MPC) is proposed with extended state observer (ESO) to attenuate the disturbances and uncertainties. In real application, system inertia and the system parameters vary in a wide range with variations of wind speeds and disturbances, which substantially degrade the maximum power tracking performance of wind turbine. The MPC design should incorporate the available model information into the ESO to improve the control efficiency. Based on this principle, a model-based MPC with ESO control structure is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of internal and external disturbances is compensated in a more effective way compared with the ESO-based MPC approach and traditional proportional integral differential (PID) control method.


Author(s):  
N. Selvaganesan

This chapter presents the design methodology of fuzzy based modeling, control, and fault diagnosis of Permanent Magnet Synchronous Generator (PMSG) system. The fuzzy based modeling scheme for PMSG is developed using the general Takagi-Sugeno fuzzy model. Subsequently, fuzzy controller is designed and simulated to maintain three phase output voltage as constant by controlling the speed of generator. The feasibility of the fuzzy model and control scheme is demonstrated using various operating conditions by MATLAB simulation. Also, fuzzy based fault detection scheme for PMSG is developed and presented. The positive and negative sequence currents are used as fault indicators and given as inputs to fuzzy fault detector. The fuzzy inference system is created, and rule base is evaluated, relating the sequence current component to the type of faults. The feasibility of this scheme is demonstrated for different types of fault under various operating conditions using MATLAB/Simulink.


2014 ◽  
Vol 42 (1) ◽  
pp. 2-15
Author(s):  
Johannes Gültlinger ◽  
Frank Gauterin ◽  
Christian Brandau ◽  
Jan Schlittenhard ◽  
Burkhard Wies

ABSTRACT The use of studded tires has been a subject of controversy from the time they came into market. While studded tires contribute to traffic safety under severe winter conditions by increasing tire friction on icy roads, they also cause damage to the road surface when running on bare roads. Consequently, one of the main challenges in studded tire development is to reduce road wear while still ensuring a good grip on ice. Therefore, a research project was initiated to gain understanding about the mechanisms and influencing parameters involved in road wear by studded tires. A test method using the institute's internal drum test bench was developed. Furthermore, mechanisms causing road wear by studded tires were derived from basic analytical models. These mechanisms were used to identify the main parameters influencing road wear by studded tires. Using experimental results obtained with the test method developed, the expected influences were verified. Vehicle driving speed and stud mass were found to be major factors influencing road wear. This can be explained by the stud impact as a dominant mechanism. By means of the test method presented, quantified and comparable data for road wear caused by studded tires under controllable conditions can be obtained. The mechanisms allow predicting the influence of tire construction and variable operating conditions on road wear.


Sign in / Sign up

Export Citation Format

Share Document