scholarly journals Generalized-Capon Method for Diff-Tomo SAR Analyses of Decorrelating Scatterers

2019 ◽  
Vol 11 (4) ◽  
pp. 412 ◽  
Author(s):  
Fabrizio Lombardini ◽  
Francesco Cai

In synthetic aperture radar (SAR) remote sensing, Differential Tomography (Diff-Tomo) is developing as a powerful crossing of the mature Differential SAR Interferometry and the emerged 3D SAR Tomography. Diff-Tomo produces advanced 4D (3D+Time) SAR imaging capabilities, extensively applied to urban deformation monitoring. More recently, it has been shown that, through Diff-Tomo, identifying temporal spectra of multiple height-distributed decorrelating scatterers, the important decorrelation-robust forest Tomography functionality is possible. To loosen application constraints of the related main experimented full model-based processing, and develop other functionalities, this work presents an adaptive, just semi-parametric, generalized-Capon Diff-Tomo method, first conceived at University of Pisa in 2013, for joint extraction of height and dynamical information of natural distributed (volumetric) scatterers, with its formalization and a series of insights. Particular reference is given to the important functionality of the separation of different decorrelation mechanisms in forest layers. Representative simulated and P-band forest data sample results are also shown. The new Diff-Tomo method is getting a flexible and rich decorrelation-robust Tomography functionality, and is able to profile height-varying temporal decorrelation, for significantly distributed scatterers.

2020 ◽  
Vol 39 (4) ◽  
pp. 5311-5318
Author(s):  
Zhengquan Hu ◽  
Yu Liu ◽  
Xiaowei Niu ◽  
Guoping Lei

As aerospace technology, computer technology, network communication technology and information technology become more and more perfect, a variety of sensors for measurement and remote sensing are constantly emerging, and the ability to acquire remote sensing data is also continuously enhanced. Synthetic Aperture Radar Interferometry (InSAR) technology greatly expands the function and application field of imaging radar. Differential InSAR (DInSAR) developed based on InSAR technology has the advantages of high precision and all-weather compared with traditional measurement methods. However, DInSAR-based deformation monitoring is susceptible to spatiotemporal coherence, orbital errors, atmospheric delays, and elevation errors. Since phase noise is the main error of InSAR, to determine the appropriate filtering parameters, an iterative adaptive filtering method for interferogram is proposed. For the limitation of conventional DInSAR, to improve the accuracy of deformation monitoring as much as possible, this paper proposes a deformation modeling based on ridge estimation and regularization as a constraint condition, and introduces a variance component estimation to optimize the deformation results. The simulation experiment of the iterative adaptive filtering method and the deformation modeling proposed in this paper shows that the deformation information extraction method based on differential synthetic aperture radar has high precision and feasibility.


2020 ◽  
Vol 12 (16) ◽  
pp. 2545 ◽  
Author(s):  
Andrea Monti-Guarnieri ◽  
Marco Manzoni ◽  
Davide Giudici ◽  
Andrea Recchia ◽  
Stefano Tebaldini

The paper addresses the temporal stability of distributed targets, particularly referring to vegetation, to evaluate the degradation affecting synthetic aperture radar (SAR) imaging and repeat-pass interferometry, and provide efficient SAR simulation schemes for generating big dataset from wide areas. The models that are mostly adopted in literature are critically reviewed, and aim to study decorrelation in a range of time (from hours to days), of interest for long-term SAR, such as ground-based or geosynchronous, or repeat-pass SAR interferometry. It is shown that none of them explicitly account for a decorrelation occurring in the short-term. An explanation is provided, and a novel temporal decorrelation model is proposed to account for that fast decorrelation. A formal method is developed to evaluate the performance of SAR focusing, and interferometry on a homogenous, stationary scene, in terms of Signal-to-Clutter Ratio (SCR), and interferometric coherence. Finally, an efficient implementation of an SAR simulator capable of handling the realistic case of heterogeneous decorrelation over a wide area is discussed. Examples are given by assuming two geostationary SAR missions in C and X band.


Author(s):  
R. Mangla ◽  
S. Kumar

A digital elevation model (DEM) is a 3D visualization of a terrain surface. It can be used in various analytical studies such as topographic feature extraction, hydrology, geomorphology and landslides analysis etc. Uttrakhand region is affected with landslides, earthquake and flash flood phenomenon. Hence this study was focused on DEM generation using Differential SAR Interferometry (DINSAR) on ALOS PALSAR dataset. Two Pass DINSAR technique involves one interferometric pair in addition with an external DEM. The external DEM was used as a reference to reduce topographic errors. The data processing steps were image co-registration, interferogram generation, interferogram flattening (Differential Interferogram), interferogram filtering, coherence map, phase unwrapping, orbital refinement and re-flattening and DEM generation. Interferogram fringes observed in forest areas were due to temporal decorrelation and the fringes in mountain regions were obtained due to topography changes (may be due to landslides in rainy season). The range of elevation in generated DEM were 132 m to 2823 m and Root Mean Square Error (RMSE) error was 36.765159 m. The generated DEM was compared with ASTER DEM and variation in height was analyzed. Atmospheric effects were not removed due to geometrical and temporal decorrelation which affect the accuracy.


2021 ◽  
Vol 13 (23) ◽  
pp. 4817
Author(s):  
Fabrizio Santi ◽  
Giovanni Paolo Blasone ◽  
Debora Pastina ◽  
Fabiola Colone ◽  
Pierfrancesco Lombardo

Synthetic aperture radar systems operating with satellites in geosynchronous orbits (GEO-SAR) can provide a permanent coverage of wide specific areas of the Earth’s surface. As well as for primary applications in remote sensing areas such as soil moisture and deformation monitoring, the wide availability of the signal emitted by a GEO-SAR on a regional scale makes it an appealing illuminator of opportunity for bistatic radars. Different types of receiving-only devices located on or near the Earth could exploit the same signal source, noticeably already conceived for radar purposes, for applications in the framework of both military and civil surveillance. This paper provides an overview of possible parasitic applications enabled by a GEO-SAR illuminator in different operative scenarios, including aerial, ground and maritime surveillance. For each selected scenario, different receiver configurations are proposed, providing an assessment of the achievable performance with discussions about the expected potentialities and challenges. This research aims at serving as a roadmap for designing parasitic systems relying on GEO-SAR signals, and also aims at extending the net of potential users interested in investing in GEO-SAR missions.


Author(s):  
P. Olea ◽  
O. Monserrat ◽  
C. Sierralta ◽  
A. Barra ◽  
L. Bono ◽  
...  

Abstract. The application of Satellite Differential SAR interferometry (DInSAR) has become a reliable solution as a tool for mapping and monitoring geohazards. Few years ago, the main applications of these techniques were devoted to science. However, nowadays, the easy access to SAR imagery and the maturity of the techniques to exploit these type of data has widened the user’s spectrum from only scientists to professional and decision makers. The advent of Sentinel-1 satellites has significantly contributed to this achievement. In particular, in the field of geohazard risk management, Sentinel-1 has solved one of the main constraining factors that hindered the operational use of interferometric techniques in the past: the lack of systematic acquisition plans. In this context, Sentinel-1 assures worldwide coverage with short temporal baselines (6 to 24 days). This has supposed a definitive step towards the implementation of DInSAR based techniques to support decision makers against geohazards. In this work, we show the first experiences of the remote sensing unit of the Geological and Mining Survey of Chile (Sernageomin) with Sentinel-1 data. Three different case studies in different areas of the Chilean territory are presented. The examples illustrate how DInSAR based techniques can provide different levels of information about geohazard activity in different environments.


2018 ◽  
Vol 10 (9) ◽  
pp. 1374 ◽  
Author(s):  
Xiao Zhu ◽  
Yuanyuan Wang ◽  
Sina Montazeri ◽  
Nan Ge

Since its launch in 2007, TerraSAR-X has continuously provided spaceborne synthetic aperture radar (SAR) images of our planet with unprecedented spatial resolution, geodetic, and geometric accuracy. This has brought life to the once inscrutable SAR images, which deterred many researchers. Thanks to merits like higher spatial resolution and more precise orbit control, we are now able to indicate individual buildings, even individual floors, to pinpoint targets within centimeter accuracy. As a result, multi-baseline SAR interferometric (InSAR) techniques are flourishing, from point target-based algorithms, to coherent stacking techniques, to absolute positioning of the former techniques. This article reviews the recent advances of multi-baseline InSAR techniques using TerraSAR-X images. Particular focus was put on our own development of persistent scatterer interferometry, SAR tomography, robust estimation in distributed scatterer interferometry and absolute positioning using geodetic InSAR. Furthermore, by introducing the applications associated with these techniques, such as 3D reconstruction and deformation monitoring, this article is also intended to give guidance to wider audiences who would like to resort to SAR data and related techniques for their applications.


Sign in / Sign up

Export Citation Format

Share Document