scholarly journals Retrieving the Lake Trophic Level Index with Landsat-8 Image by Atmospheric Parameter and RBF: A Case Study of Lakes in Wuhan, China

2019 ◽  
Vol 11 (4) ◽  
pp. 457 ◽  
Author(s):  
Yadong Zhou ◽  
Baoyin He ◽  
Fei Xiao ◽  
Qi Feng ◽  
Jiefeng Kou ◽  
...  

The importance of atmospheric correction is pronounced for retrieving physical parameters in aquatic systems. To improve the retrieval accuracy of trophic level index (TLI), we built eight models with 43 samples in Wuhan and proposed an improved method by taking atmospheric water vapor (AWV) information and Landsat-8 (L8) remote sensing image into the input layer of radical basis function (RBF) neural network. All image information taken in RBF have been radiometrically calibrated. Except model(a), image data used in the other seven models were not atmospherically corrected. The eight models have different inputs and the same output (TLI). The models are as follows: (1) model(a), the inputs are seven single bands; (2) model(c), besides seven single bands (b1, b2, b3, b4, b5, b6, b7), we added the AWV parameter k1 to the inputs; (3) model(c1), the inputs are AWV difference coefficient k2 and the seven bands; (4) model(c2), the input layers include seven single bands, k1 and k2; (5) model(b), seven band ratios (b3/b5, b1/b2, b3/b7, b2/b5, b2/b7, b3/b6, and b3/b4) were used as input parameters; (6) model(b1), the inputs are k1 and seven band ratios; (7) model(b2), the inputs are k2 and seven band ratios; (8) model(b3), the inputs are k1, k2, and seven band ratios. We estimated models with root mean squared error (RMSE), model(a) > model(b3) > model(b1) > model(c2) > model(c) > model(b) > model(c1) > model(b2). RMSE of the eight models are 12.762, 11.274, 10.577, 8.904, 8.361, 6.396, 5.389, and 5.104, respectively. Model b2 and c1 are two best models in these experiments, which confirms both the seven single bands and band ratios with k2 are superior to other models. Results also corroborate that most lakes in Wuhan urban area are in mesotrophic and light eutrophic states.

Author(s):  
Leonid Katkovsky

Atmospheric correction is a necessary step in the processing of remote sensing data acquired in the visible and NIR spectral bands.The paper describes the developed atmospheric correction technique for multispectral satellite data with a small number of relatively broad spectral bands (not hyperspectral). The technique is based on the proposed analytical formulae that expressed the spectrum of outgoing radiation at the top of a cloudless atmosphere with rather high accuracy. The technique uses a model of the atmosphere and its optical and physical parameters that are significant from the point of view of radiation transfer, the atmosphere is considered homogeneous within a satellite image. To solve the system of equations containing the measured radiance of the outgoing radiation in the bands of the satellite sensor, the number of which is less than the number of unknowns of the model, it is proposed to use various additional relations, including regression relations between the optical parameters of the atmosphere. For a particular image pixel selected in a special way, unknown atmospheric parameters are found, which are then used to calculate the reflectance for all other pixels.Testing the proposed technique on OLI sensor data of Landsat 8 satellite showed higher accuracy in comparison with the FLAASH and QUAC methods implemented in the well-known ENVI image processing software. The technique is fast and there is using no additional information about the atmosphere or land surface except images under correction.


2019 ◽  
Vol 11 (2) ◽  
pp. 169 ◽  
Author(s):  
Dian Wang ◽  
Ronghua Ma ◽  
Kun Xue ◽  
Steven Loiselle

The OLI (Operational Land Imager) sensor on Landsat-8 has the potential to meet the requirements of remote sensing of water color. However, the optical properties of inland waters are more complex than those of oceanic waters, and inland atmospheric correction presents additional challenges. We examined the performance of atmospheric correction (AC) methods for remote sensing over three highly turbid or hypereutrophic inland waters in China: Lake Hongze, Lake Chaohu, and Lake Taihu. Four water-AC algorithms (SWIR (Short Wave Infrared), EXP (Exponential Extrapolation), DSF (Dark Spectrum Fitting), and MUMM (Management Unit Mathematics Models)) and three land-AC algorithms (FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes), 6SV (a version of Second Simulation of the Satellite Signal in the Solar Spectrum), and QUAC (Quick Atmospheric Correction)) were assessed using Landsat-8 OLI data and concurrent in situ data. The results showed that the EXP (and DSF) together with 6SV algorithms provided the best estimates of the remote sensing reflectance (Rrs) and band ratios in water-AC algorithms and land-AC algorithms, respectively. AC algorithms showed a discriminating accuracy for different water types (turbid waters, in-water algae waters, and floating bloom waters). For turbid waters, EXP gave the best Rrs in visible bands. For the in-water algae and floating bloom waters, however, all water-algorithms failed due to an inappropriate aerosol model and non-zero reflectance at 1609 nm. The results of the study show the improvements that can be achieved considering SWIR bands and using band ratios, and the need for further development of AC algorithms for complex aquatic and atmospheric conditions, typical of inland waters.


2021 ◽  
Vol 13 (3) ◽  
pp. 438
Author(s):  
Subrina Tahsin ◽  
Stephen C. Medeiros ◽  
Arvind Singh

Long-term monthly coastal wetland vegetation monitoring is the key to quantifying the effects of natural and anthropogenic events, such as severe storms, as well as assessing restoration efforts. Remote sensing data products such as Normalized Difference Vegetation Index (NDVI), alongside emerging data analysis techniques, have enabled broader investigations into their dynamics at monthly to decadal time scales. However, NDVI data suffer from cloud contamination making periods within the time series sparse and often unusable during meteorologically active seasons. This paper proposes a virtual constellation for NDVI consisting of the red and near-infrared bands of Landsat 8 Operational Land Imager, Sentinel-2A Multi-Spectral Instrument, and Advanced Spaceborne Thermal Emission and Reflection Radiometer. The virtual constellation uses time-space-spectrum relationships from 2014 to 2018 and a random forest to produce synthetic NDVI imagery rectified to Landsat 8 format. Over the sample coverage area near Apalachicola, Florida, USA, the synthetic NDVI showed good visual coherence with observed Landsat 8 NDVI. Comparisons between the synthetic and observed NDVI showed Root Mean Squared Error and Coefficient of Determination (R2) values of 0.0020 sr−1 and 0.88, respectively. The results suggest that the virtual constellation was able to mitigate NDVI data loss due to clouds and may have the potential to do the same for other data. The ability to participate in a virtual constellation for a useful end product such as NDVI adds value to existing satellite missions and provides economic justification for future projects.


2021 ◽  
Vol 13 (15) ◽  
pp. 2869
Author(s):  
MohammadAli Hemati ◽  
Mahdi Hasanlou ◽  
Masoud Mahdianpari ◽  
Fariba Mohammadimanesh

With uninterrupted space-based data collection since 1972, Landsat plays a key role in systematic monitoring of the Earth’s surface, enabled by an extensive and free, radiometrically consistent, global archive of imagery. Governments and international organizations rely on Landsat time series for monitoring and deriving a systematic understanding of the dynamics of the Earth’s surface at a spatial scale relevant to management, scientific inquiry, and policy development. In this study, we identify trends in Landsat-informed change detection studies by surveying 50 years of published applications, processing, and change detection methods. Specifically, a representative database was created resulting in 490 relevant journal articles derived from the Web of Science and Scopus. From these articles, we provide a review of recent developments, opportunities, and trends in Landsat change detection studies. The impact of the Landsat free and open data policy in 2008 is evident in the literature as a turning point in the number and nature of change detection studies. Based upon the search terms used and articles included, average number of Landsat images used in studies increased from 10 images before 2008 to 100,000 images in 2020. The 2008 opening of the Landsat archive resulted in a marked increase in the number of images used per study, typically providing the basis for the other trends in evidence. These key trends include an increase in automated processing, use of analysis-ready data (especially those with atmospheric correction), and use of cloud computing platforms, all over increasing large areas. The nature of change methods has evolved from representative bi-temporal pairs to time series of images capturing dynamics and trends, capable of revealing both gradual and abrupt changes. The result also revealed a greater use of nonparametric classifiers for Landsat change detection analysis. Landsat-9, to be launched in September 2021, in combination with the continued operation of Landsat-8 and integration with Sentinel-2, enhances opportunities for improved monitoring of change over increasingly larger areas with greater intra- and interannual frequency.


2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


2010 ◽  
Vol 121-122 ◽  
pp. 574-578
Author(s):  
Hui Yu Jiang ◽  
Min Dong ◽  
Wei Li

The octanol / water partition coefficient (Kow) is an important physical parameters to describe their behavior in the environment. However, because of some reasons, it is difficult to determine the octanol / water partition coefficient of each compound accurately. In this paper, we will introduce RBF neural network and molecular bond connectivity index to forecast the solubility of organic compounds in water. The result is better using the BP network to predict, the correlation coefficient has achieved 0.998, the prediction error in the permission scope.


2018 ◽  
Vol 10 (9) ◽  
pp. 1379 ◽  
Author(s):  
Simon Plank ◽  
Michael Nolde ◽  
Rudolf Richter ◽  
Christian Fischer ◽  
Sandro Martinis ◽  
...  

Villarrica Volcano is one of the most active volcanoes in the South Andes Volcanic Zone. This article presents the results of a monitoring of the time before and after the 3 March 2015 eruption by analyzing nine satellite images acquired by the Technology Experiment Carrier-1 (TET-1), a small experimental German Aerospace Center (DLR) satellite. An atmospheric correction of the TET-1 data is presented, based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GDEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor data with the shortest temporal baseline to the TET-1 acquisitions. Next, the temperature, area coverage, and radiant power of the detected thermal hotspots were derived at subpixel level and compared with observations derived from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data. Thermal anomalies were detected nine days before the eruption. After the decrease of the radiant power following the 3 March 2015 eruption, a stronger increase of the radiant power was observed on 25 April 2015. In addition, we show that the eruption-related ash coverage of the glacier at Villarrica Volcano could clearly be detected in TET-1 imagery. Landsat-8 imagery was analyzed for comparison. The information extracted from the TET-1 thermal data is thought be used in future to support and complement ground-based observations of active volcanoes.


Author(s):  
Bambang Trisakti ◽  
Nana Suwargana ◽  
I Made Parsa

Land conversion occurred in the lake catchment area caused the decreasing of water quality in many lakes of Indonesia. According to Lake Ecosystem Management Guidelines from Ministry of Environment, tropic state of lake water is one of parameters for assessing the lake ecosystem status. Tropic state can be indicated by the quantity of nitrogen, phosphorus, chlorophyll, and water clarity. The objective of this research is to develop the water quality algorithm and map the water clarity of lake water using Landsat 8 data. The data were standardized for sun geometry correction and atmospheric correction using Dark Object Subtraction method. In the first step, Total Suspended Solid (TSS) distributions in the lake were calculated using a semi empirical algorithm (Doxaran et al., 2002), which can be applied to a wide range of TSS values. Secchi Disk Transparency (SDT) distributions were calculated using our water clarity algorithm that was obtained from the relationship between TSS and SDT measured directly in the lake waters. The result shows that the water clarity algorithm developed in this research has the determination coefficient that reaches to 0,834. Implementation of the algorithm for Landsat 8 data in 2013 and 2014 showed that the water clarity in Kerinci Lake waters was around 2 m or less, but the water clarity in Tondano Lake waters was around 2 – 3 m. It means that Kerinci Lake waters had lower water clarity than Tondano Lake waters which is consistent with the field measurement results.


2019 ◽  
Vol 11 (22) ◽  
pp. 2606 ◽  
Author(s):  
Zhiqiang Li ◽  
Chengqi Cheng

The increasing availability of sensors enables the combination of a high-spatial-resolution panchromatic image and a low-spatial-resolution multispectral image, which has become a hotspot in recent years for many applications. To address the spectral and spatial distortions that adversely affect the conventional methods, a pan-sharpening method based on a convolutional neural network (CNN) architecture is proposed in this paper, where the low-spatial-resolution multispectral image is upgraded and integrated with the high-spatial-resolution panchromatic image to produce a new multispectral image with high spatial resolution. Based on the pyramid structure of the CNN architecture, the proposed method has high learning capacity to generate more representative and robust hierarchical features for construction tasks. Moreover, the highly nonlinear fusion process can be effectively simulated by stacking several linear filtering layers, which is suitable for learning the complex mapping relationship between a high-spatial-resolution panchromatic and low-spatial-resolution multispectral image. Both qualitative and quantitative experimental analyses were carried out on images captured from a Landsat 8 on-board operational land imager (LOI) sensor to demonstrate the method’s performance. The results regarding the sensitivity analysis of the involved parameters indicate the effects of parameters on the performance of our CNN-based pan-sharpening approach. Additionally, our CNN-based pan-sharpening approach outperforms other existing conventional pan-sharpening methods with a more promising fusion result for different landcovers, with differences in Erreur Relative Globale Adimensionnelle de Synthse (ERGAS), root-mean-squared error (RMSE), and spectral angle mapper (SAM) of 0.69, 0.0021, and 0.81 on average, respectively.


Sign in / Sign up

Export Citation Format

Share Document