scholarly journals A Synergistic Use of a High-Resolution Numerical Weather Prediction Model and High-Resolution Earth Observation Products to Improve Precipitation Forecast

2019 ◽  
Vol 11 (20) ◽  
pp. 2387 ◽  
Author(s):  
Martina Lagasio ◽  
Antonio Parodi ◽  
Luca Pulvirenti ◽  
Agostino Meroni ◽  
Giorgio Boni ◽  
...  

The Mediterranean region is frequently struck by severe rainfall events causing numerous casualties and several million euros of damages every year. Thus, improving the forecast accuracy is a fundamental goal to limit social and economic damages. Numerical Weather Prediction (NWP) models are currently able to produce forecasts at the km scale grid spacing but unreliable surface information and a poor knowledge of the initial state of the atmosphere may produce inaccurate simulations of weather phenomena. The STEAM (SaTellite Earth observation for Atmospheric Modelling) project aims to investigate whether Sentinel satellites constellation weather observation data, in combination with Global Navigation Satellite System (GNSS) observations, can be used to better understand and predict with a higher spatio-temporal resolution the atmospheric phenomena resulting in severe weather events. Two heavy rainfall events that occurred in Italy in the autumn of 2017 are studied—a localized and short-lived event and a long-lived one. By assimilating a wide range of Sentinel and GNSS observations in a state-of-the-art NWP model, it is found that the forecasts benefit the most when the model is provided with information on the wind field and/or the water vapor content.

2019 ◽  
Vol 11 (14) ◽  
pp. 1690 ◽  
Author(s):  
Anna Cinzia Marra ◽  
Stefano Federico ◽  
Mario Montopoli ◽  
Elenio Avolio ◽  
Luca Baldini ◽  
...  

This study shows how satellite-based passive and active microwave (MW) sensors can be used in conjunction with high-resolution Numerical Weather Prediction (NWP) simulations to provide insights of the precipitation structure of the tropical-like cyclone (TLC) Numa, which occurred on 15–19 November 2017. The goal of the paper is to characterize and monitor the precipitation at the different stages of its evolution from development to TLC phase, throughout the storm transition over the Mediterranean Sea. Observations by the NASA/JAXA Global Precipitation Measurement Core Observatory (GPM-CO) and by the GPM constellation of MW radiometers are used, in conjunction with the Regional Atmospheric Modeling System (RAMS) simulations. The GPM-CO measurements are used to analyze the passive MW radiometric response to the microphysical structure of the storm, while the comparison between successive MW radiometer overpasses shows the evolution of Numa precipitation structure from its early development stage on the Ionian Sea into its TLC phase, as it persists over southern coast of Italy (Apulia region) for several hours. Measurements evidence stronger convective activity at the development phase compared to the TLC phase, when strengthening or weakening phases in the eye development, and the occurrence of warm rain processes in the areas surrounding the eye, are identified. The weak scattering and polarization signal at and above 89 GHz, the lack of scattering signal at 37 GHz, and the absence of electrical activity in correspondence of the rainbands during the TLC phase, indicate weak convection and the presence of supercooled cloud droplets at high levels. RAMS high-resolution simulations support what inferred from the observations, evidencing Numa TLC characteristics (closed circulation around a warm core, low vertical wind shear, intense surface winds, heavy precipitation), persisting for more than 24 h. Moreover, the implementation of DPR 3D reflectivity field in the RAMS data assimilation system shows a small (but non negligible) impact on the precipitation forecast over the sea up to a few hours after the DPR overpass.


2021 ◽  
Author(s):  
Sven Ulbrich ◽  
Christian Welzbacher ◽  
Kobra Khosravianghadikolaei ◽  
Michael Hoff ◽  
Alberto de Lozar ◽  
...  

<p>The SINFONY project at Deutscher Wetterdienst (DWD) aims to produce seamless precipitation forecast products from minutes up to 12 hours, with particular focus on convective events. While the near future predictions are typically from nowcasting procedures using radar data, the numerical weather prediction (NWP) aims at longer time scales. The lead-time in the latest available forecast is usually too long for merging both the nowcasting and NWP output to produce reliable seamless predictions.</p><p>At DWD, the current forecasts are produced by the short range numerical weather prediction (SRNWP) <span>making use of a</span> continuous assimilation cycle with relatively long cutoff times and using 1-moment microphysics. In order to reduce the differences in the precipitation to the <span>nowcasting </span>on the NWP side, we use two different approaches. First, we reduce the lead-time from the model start by running 1-hourly forecasts based on an assimilation cycle with shorter data cutoff. Secondly, we use new observational systems in the assimilation cycle, such as radar or satellite data to capture and represent strong convective activity. This procedure is called Rapid Update Cycle (RUC). As an additional measure, we introduce a 2-Moment microphysics scheme into the numerical model, resulting in a better representation of the radar reflectivities. In order to keep the model state similar to that of the SRNWP, the RUC is a time limited assimilation cycle starting from forecasts of the SRNWP at pre-defined times.</p><p>The introduction of the 2-Moment scheme leads to a spin-up affecting both the assimilation cycle and the short forecasts. The resulting effects are analysed by comparison with the corresponding assimilation cycle using the 1-Moment scheme. As a complementary approach for the analysis, the routine cycle is run with the 2-Moment scheme. The forecast quality is used as a measure to compare the results with respect to precipitation and additional observed parameters. It is shown in how far the resulting improvements are related to the assimilation and momentum scheme, or to the higher frequency of forecasts.</p>


2021 ◽  
Author(s):  
Ruth Mottram ◽  
Oskar Landgren ◽  
Rasmus Anker Pedersen ◽  
Kristian Pagh Nielsen ◽  
Ole Bøssing Christensen ◽  
...  

<p>The development of the HARMONIE model system has led to huge advances in numerical weather prediction, including over Greenland where a numerical weather prediction (NWP) model is used to forecast daily surface mass budget over the Greenland ice sheet as presented on polarportal.dk. The new high resolution Copernicus Arctic Reanalysis further developed the possibilities in HARMONIE with full 3DVar data assimilation and extended use of quality-controlled local observations. Here, we discuss the development and current status of the climate version of the HARMONIE Climate model (HCLIM). The HCLIM system has opened up the possibility for flexible use of the model at a range of spatial scales using different physical schemes including HARMONIE-AROME, ALADIN and ALARO for different spatial and temporal resolutions and assimilating observations, including satellite data on sea ice concentration from ESA CCI+, to improve hindcasts. However, the range of possibilities means that documenting the effects of different physics and parameterisation schemes is important before widespread application. </p><p>Here, we focus on HCLIM performance over the Greenland ice sheet, using observations to verify the different plausible set-ups and investigate biases in climate model outputs that affect the surface mass budget (SMB) of the Greenland ice sheet. </p><p>The recently funded Horizon 2020 project PolarRES will use the HCLIM model for very high resolution regional downscaling, together with other regional climate models in both Arctic and Antarctic regions, and our analysis thus helps to optimise the use of HCLIM in the polar regions for different modelling purposes.</p>


2021 ◽  
Author(s):  
Andreas Beckert ◽  
Lea Eisenstein ◽  
Tim Hewson ◽  
George C. Craig ◽  
Marc Rautenhaus

<p><span>Atmospheric fronts, a widely used conceptual model in meteorology, describe sharp boundaries between two air masses of different thermal properties. In the mid-latitudes, these sharp boundaries are commonly associated with extratropical cyclones. The passage of a frontal system is accompanied by significant weather changes, and therefore fronts are of particular interest in weather forecasting. Over the past decades, several two-dimensional, horizontal feature detection methods to objectively identify atmospheric fronts in numerical weather prediction (NWP) data were proposed in the literature (e.g. Hewson, Met.Apps. 1998). In addition, recent research (Kern et al., IEEE Trans. Visual. Comput. Graphics, 2019) has shown the feasibility of detecting atmospheric fronts as three-dimensional surfaces representing the full 3D frontal structure. In our work, we build on the studies by Hewson (1998) and Kern et al. (2019) to make front detection usable for forecasting purposes in an interactive 3D visualization environment. We consider the following aspects: (a) As NWP models evolved in recent years to resolve atmospheric processes on scales far smaller than the scale of midlatitude-cyclone- fronts, we evaluate whether previously developed detection methods are still capable to detect fronts in current high-resolution NWP data. (b) We present integration of our implementation into the open-source “Met.3D” software (http://met3d.wavestoweather.de) and analyze two- and three-dimensional frontal structures in selected cases of European winter storms, comparing different models and model resolution. (c) The considered front detection methods rely on threshold parameters, which mostly refer to the magnitude of the thermal gradient within the adjacent frontal zone - the frontal strength. If the frontal strength exceeds the threshold, a so-called feature candidate is classified as a front, while others are discarded. If a single, fixed, threshold is used, unwanted “holes” can be observed in the detected fronts. Hence, we use transparency mapping with fuzzy thresholds to generate continuous frontal features. We pay particular attention to the adjustment of filter thresholds and evaluate the dependence of thresholds and resolution of the underlying data.</span></p>


2016 ◽  
Vol 9 (1) ◽  
pp. 281-293 ◽  
Author(s):  
M.-H. Ahn ◽  
H. Y. Won ◽  
D. Han ◽  
Y.-H. Kim ◽  
J.-C. Ha

Abstract. The ground-based microwave sounding radiometers installed at nine weather stations of Korea Meteorological Administration alongside with the wind profilers have been operating for more than 4 years. Here we apply a process to assess the characteristics of the observation data by comparing the measured brightness temperature (Tb) with reference data. For the current study, the reference data are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model instead of the conventional radiosonde data. Based on the 3 years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration on the quality of the measured Tb. We also showed that when clouds are present the comparison with the model has a high variability due to presence of cloud liquid water therefore making cloudy data not suitable for assessment of the radiometer's performance. Finally we showed that differences between modeled and measured brightness temperatures are unlikely due to a shift in the selection of the center frequency but more likely due to spectroscopy issues in the wings of the 60 GHz absorption band. With a proper consideration of data affected by these two effects, it is shown that there is an excellent agreement between the measured and simulated Tb. The regression coefficients are better than 0.97 along with the bias value of better than 1.0 K except for the 52.28 GHz channel which shows a rather large bias and variability of −2.6 and 1.8 K, respectively.


2018 ◽  
Vol 144 (715) ◽  
pp. 1681-1694 ◽  
Author(s):  
Zhipeng Qu ◽  
Howard W. Barker ◽  
Alexei V. Korolev ◽  
Jason A. Milbrandt ◽  
Ivan Heckman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document