scholarly journals Radiometric Variations of On-Orbit FORMOSAT-5 RSI from Vicarious and Cross-Calibration Measurements

2019 ◽  
Vol 11 (22) ◽  
pp. 2634 ◽  
Author(s):  
Tang-Huang Lin ◽  
Jui-Chung Chang ◽  
Kuo-Hsien Hsu ◽  
Yun-Shan Lee ◽  
Sheng-Kai Zeng ◽  
...  

A new Taiwanese satellite, FORMOSAT-5 (FS-5), with a payload remote sensing instrument (RSI) was launched in August 2017 to continue the mission of its predecessor FORMOSAT-2 (FS-2). Similar to FS-2, the RSI provides 2-m resolution panchromatic and 4-m resolution multi-spectral images as the primary payload on FS-5. However, the radiometric properties of the optical sensor may vary, based on the environment and time after being launched into the space. Thus, maintaining the radiometric quality of FS-5 RSI imagery is essential and significant to scientific research and further applications. Therefore, the objective of this study aimed at the on-orbit absolute radiometric assessment and calibration of on-orbit FS-5 RSI observations. Two renowned approaches, vicarious calibrations and cross-calibrations, were conducted at two calibration sites that employ a stable atmosphere and high surface reflectance, namely, Alkali Lake and Railroad Valley Playa in North America. For cross-calibrations, the Landsat-8 Operational Land Imager (LS-8 OLI) was selected as the reference. A second simulation of the satellite signal in the solar spectrum (6S) radiative transfer model was performed to compute the surface reflectance, atmospheric effects, and path radiance for the radiometric intensity at the top of the atmosphere. Results of vicarious calibrations from 11 field experiments demonstrated high consistency with those of seven case examinations of cross-calibration in terms of physical gain in spectra, implying that the practicality of the proposed approaches is high. Moreover, the multi-temporal results illustrated that RSI decay in optical sensitivity was evident after launch. The variation in the calibration coefficient of each band showed no obvious consistency (6%–24%) in 2017, but it tended to be stable at the order of 3%–5% of variation in most spectral bands during 2018. The results strongly suggest that periodical calibration is required and essential for further scientific applications.

Author(s):  
V. N. Pathak ◽  
M. R. Pandya ◽  
D. B. Shah ◽  
H. J. Trivedi

<p><strong>Abstract.</strong> In the present study, a physics based method called Scheme for Atmospheric Correction of Landsat-8 (SACLS8) is developed for the Operational Land Imager (OLI) sensor of Landsat-8. The Second Simulation of the Satellite Signal in the Solar Spectrum Vector (6SV) radiative transfer model is used in the simulations to obtain the surface reflectance. The surface reflectance derived using the SACL8 scheme is validated with the <i>in-situ</i> measurements of surface reflectance carried out at the homogeneous desert site located in the Little Rann of Kutch, Gujarat, India. The results are also compared with Landsat-8 surface reflectance standard data product over the same site. The good agreement of results with high coefficient of determination (R<sup>2</sup><span class="thinspace"></span>><span class="thinspace"></span>0.94) and low root mean square error (of the order of 0.03) with <i>in-situ</i> measurement values as well as those obtained from the Landsat-8 surface reflectance data establishes a good performance of the SACLS8 scheme for the atmospheric correction of Landsat-8 dataset.</p>


2020 ◽  
Vol 12 (1) ◽  
pp. 184 ◽  
Author(s):  
Malvina Silvestri ◽  
Vito Romaniello ◽  
Simon Hook ◽  
Massimo Musacchio ◽  
Sergio Teggi ◽  
...  

The ECO System Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) is a new space mission developed by NASA-JPL which launched on July 2018. It includes a multispectral thermal infrared radiometer that measures the radiances in five spectral channels between 8 and 12 μm. The primary goal of the mission is to study how plants use water by measuring their temperature from the vantage point of the International Space Station. However, as ECOSTRESS retrieves the surface temperature, the data can be used to measure other heat-related phenomena, such as heat waves, volcanic eruptions, and fires. We have cross-compared the temperatures obtained by ECOSTRESS, the Advanced Spaceborne Thermal Emission and Reflectance radiometer (ASTER) and the Landsat 8 Thermal InfraRed Sensor (TIRS) in areas where thermal anomalies are present. The use of ECOSTRESS for temperature analysis as well as ASTER and Landsat 8 offers the possibility of expanding the availability of satellite thermal data with very high spatial and temporal resolutions. The Temperature and Emissivity Separation (TES) algorithm was used to retrieve surface temperatures from the ECOSTRESS and ASTER data, while the single-channel algorithm was used to retrieve surface temperatures from the Landsat 8 data. Atmospheric effects in the data were removed using the moderate resolution atmospheric transmission (MODTRAN) radiative transfer model driven with vertical atmospheric profiles collected by the University of Wyoming. The test sites used in this study are the active Italian volcanoes and the Parco delle Biancane geothermal area (Italy). In order to test and quantify the difference between the temperatures retrieved by the three spaceborne sensors, a set of coincident imagery was acquired and used for cross comparison. Preliminary statistical analyses show a very good agreement in terms of correlation and mean values among sensors over the test areas.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3504 ◽  
Author(s):  
Jayne Boehmler ◽  
S. Loría-Salazar ◽  
Chris Stevens ◽  
James Long ◽  
Adam Watts ◽  
...  

Bright surfaces across the western U.S. lead to uncertainties in satellite derived aerosol optical depth (AOD) where AOD is typically overestimated. With this in mind, a compact and portable instrument was developed to measure surface albedo on an unmanned aircraft system (UAS). This spectral albedometer uses two Hamamatsu micro-spectrometers (range: 340–780 nm) for measuring incident and reflected solar radiation at the surface. The instrument was deployed on 5 October 2017 in Nevada’s Black Rock Desert (BRD) to investigate a region of known high surface reflectance for comparison with albedo products from satellites. It was found that satellite retrievals underestimate surface reflectance compared to the UAS mounted albedometer. To highlight the importance of surface reflectance on the AOD from satellite retrieval algorithms, a 1-D radiative transfer model was used. The simple model was used to determine the sensitivity of AOD with respect to the change in albedo and indicates a large sensitivity of AOD retrievals to surface reflectance for certain combinations of surface albedo and aerosol optical properties. This demonstrates the need to increase the number of surface albedo measurements and an intensive evaluation of albedo satellite retrievals to improve satellite-derived AOD. The portable instrument is suitable for other applications as well.


2020 ◽  
Author(s):  
Daeseong Jung ◽  
Donghyun Jin ◽  
Sungwon Choi ◽  
Noh-hun Seong ◽  
Kyung-soo Han

&lt;p&gt;The acquisition of image data from satellite is performed by the satellite&amp;#8217;s sensor after the light from the sun is reflected in object at the surface. In this process, light passes through the earth's atmosphere twice and is affected by the scattering, absorption and reflection by the atmosphere. This effect of the atmosphere reduces the power of the sun's light entering the sensor and consequently influences image data. The process of removing this effect is called atmospheric correction. Generally, the radiative transfer model (RTM) such as the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) is used in the atmospheric correction methods for surface reflectance retrieval. In general, RTM have high accuracy. But, RTM processing takes long time to perform atmospheric correction. So, several studies have applied the Look-up Table (LUT) method based on RTM. However, LUT is not an exact method due to the increment and range of input variables. In this study, we used the Deep Neural Network (DNN) method to predict surface reflectance for KOMPSAT-3A data. To Build an effective DNN model, 6S-based LUT is used as training data and the hyper-parameters have been adjusted. To evaluate the surface reflectance retrieval, we compared the surface reflectance derived of 6S RTM, 6S-based LUT and DNN methods.&lt;/p&gt;


Author(s):  
M. R. Pandya ◽  
V. N. Pathak ◽  
D. B. Shah ◽  
R.. P Singh

The Indian Remote Sensing (IRS) satellite series has been providing data since 1988 through various Earth observation missions. Before using IRS data for the quantitative analysis and parameter retrieval, it must be corrected for the atmospheric effects because spectral bands of IRS sensors are contaminated by intervening atmosphere. Standard atmospheric correction model tuned for the IRS sensors was not available for deriving surface reflectance. Looking at this gap area, a study was carried out to develop a physicsbased method, called SACRS2- a Scheme for Atmospheric Correction of Resourcesat-2 (RS2) AWiFS data. SACRS2 is a computationally fast scheme developed for correcting large amount of data acquired by RS2-AWiFS sensor using a detailed radiative transfer model 6SV. The method is based on deriving a set of coefficients which depend on spectral bands of the RS2-AWiFS sensor through thousands of forward signal simulations by 6SV. Once precise coefficients of all the physical processes of atmospheric correction are determined for RS2-AWiFS spectral bands then a complete scheme was developed using these coefficients. Major inputs of the SACRS2 scheme are raw digital numbers recorded by RS2-AWiFS sensor, aerosol optical thickness at 550 nm, columnar water vapour content, ozone content and viewing-geometry. Results showed a good performance of SACRS2 with a maximum relative error in the SACRS2 simulations ranged between approximately 2 to 7 percent with respect to reference 6SV computations. A complete software package containing the SACRS2 model along with user guide and test dataset has been released on the website (www.mosdac.gov.in) for the researchers.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2564
Author(s):  
Cheonggil Jin ◽  
Hoyong Ahn ◽  
Doochun Seo ◽  
Chuluong Choi

In recent years, Korea has sustained consistent access to remote sensed data by launching Korea Multi-Purpose Satellite-3A (KOMPSAT-3A, K3A)—an updated version of the high-resolution KOMPSAT series. This KOMPSAT-3A required calibration and validation (Cal/Val) before and after its launch to enable proper functional characterization and to maintain the veracity of data collected. The Korea Aerospace Research Institute (KARI) executed the initial prelaunch calibration in the laboratory and we performed the Cal/Val of KOMPSAT-3A during the Launch and Early Operation Phase (LEOP) in the field. Two suitable sites in Korea and Mongolia with stable weather, almost uniform terrain, and near Lambertian diffusion, provided the necessary tarp reflectance to calculate the absolute radiometric calibration coefficients. The surface reflectance was determined using 12 and four well-calibrated reference reflectance tarps employing the FieldSpec® 3(Analytical Spectral Devices Inc., Boulder, CO, USA) Spectroradiometer. Subsequently, the top of atmosphere (TOA) radiance was estimated using radiative transfer code (RTC) software based on the Atmospheric and Topographic Correction (ATCOR). In addition, cross calibration was simultaneously performed at the Libya-4 pseudo invariant calibration site (PICS) for KOMPSAT-3A TOA radiance, using the spectral band adjustment factor (SBAF) compensated Landsat 8 reflectance and the Second Simulation of Satellite Signal in the Solar Spectrum (6S) to compute cross calibration coefficients. The results of the KOMPSAT-3A absolute calibration coefficient show that the R2 values were over 0.99, implying a significant correlation for almost all bands between the TOA radiance and the KOMPSAT-3A spectral band response at both campaign sites. However, this study reveals a difference of less than 5% calibration gains for all bands compared to the prelaunch values, while the cross calibration gain is below 5% in visible bands and above 5% in the near infrared band. An effort to optimize the reliability of the absolute calibration coefficients resorted to the rigorous quantification of uncertainties amongst atmospheric conditions, the digital number (DN), the reflectance tarp, the bidirectional reflectance distribution function (BRDF), and ozone levels. Therefore, we presumed that the total uncertainty was 4.27%, which conforms to some published results.


2021 ◽  
Vol 13 (4) ◽  
pp. 781
Author(s):  
Cristiana Bassani ◽  
Sindy Sterckx

For water quality monitoring using satellite data, it is often required to optimize the low radiance signal through the application of radiometric gains. This work describes a procedure for the retrieval of radiometric gains to be applied to OLI/L8 and MSI/S2A data over coastal waters. The gains are defined by the ratio of the top of atmosphere (TOA) reflectance simulated using the Second Simulation of a Satellite Signal in the Solar Spectrum—vector (6SV) radiative transfer model, REF, and the TOA reflectance acquired by the sensor, MEAS, over AERONET-OC stations. The REF is simulated considering quasi-synchronous atmospheric and aquatic AERONET-OC products and the image acquisition geometry. Both for OLI/L8 and MSI/S2A the measured TOA reflectance was higher than the modeled signal in almost all bands resulting in radiometric gains less than 1. The use of retrieved gains showed an improvement of reflectance remote sensing, Rrs, when with ACOLITE atmospheric correction software. When the gains are applied an accuracy improvement of the Rrs in the 400–700 nm domain was observed except for the first blue band of both sensors. Furthermore, the developed procedure is quick, user-friendly, and easily transferable to other optical sensors.


2021 ◽  
Author(s):  
Marta Luffarelli ◽  
Yves Govaerts

&lt;p&gt;The CISAR (Combined Inversion of Surface and AeRosols) algorithm is exploited in the framework of the ESA Aerosol Climate Change Initiatiave (CCI) project, aiming at providing a set of atmospheric (cloud and aerosol) and surface reflectance products derived from S3A/SLSTR observations using the same radiative transfer physics and assumptions. CISAR is an advance algorithm developed by Rayference originally designed for the retrieval of aerosol single scattering properties and surface reflectance from both geostationary and polar orbiting satellite observations. &amp;#160;It is based on the inversion of a fast radiative transfer model (FASTRE). The retrieval mechanism allows a continuous variation of the aerosol and cloud single scattering properties in the solution space.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Traditionally, different approaches are exploited to retrieve the different Earth system components, which could lead to inconsistent data sets. The simultaneous retrieval of different atmospheric and surface variables over any type of surface (including bright surfaces and water bodies) with the same forward model and inversion scheme ensures the consistency among the retrieved Earth system components. Additionally, pixels located in the transition zone between pure clouds and pure aerosols are often discarded from both cloud and aerosol algorithms. This &amp;#8220;twilight zone&amp;#8221; can cover up to 30% of the globe. A consistent retrieval of both cloud and aerosol single scattering properties with the same algorithm could help filling this gap.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The CISAR algorithm aims at overcoming the need of an external cloud mask, discriminating internally between aerosol and cloud properties. This approach helps reducing the overestimation of aerosol optical thickness in cloud contaminated pixels. The surface reflectance product is delivered both for cloud-free and cloudy observations. &amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Global maps obtained from the processing of S3A/SLSTR observations will be shown. The SLSTR/CISAR products over events such as, for instance, the Australian fire in the last months of 2019, will be discussed in terms of aerosol optical thickness, aerosol-cloud discrimination and fine/coarse mode fraction.&lt;/p&gt;


2018 ◽  
Author(s):  
Alba Lorente ◽  
K. Folkert Boersma ◽  
Piet Stammes ◽  
L. Gijsbert Tilstra ◽  
Andreas Richter ◽  
...  

Abstract. The angular distribution of the light reflected by the Earth's surface influences top-of-atmosphere (TOA) reflectance values. This surface reflectance anisotropy has implications for UV/Vis satellite retrievals of albedo, clouds, and trace gases such as nitrogen dioxide (NO2). These retrievals routinely assume the surface to reflect light isotropically. Here we show that cloud fractions retrieved from GOME-2A and OMI with the FRESCO and OMCLDO2 algorithms have an East-West bias of 10 % to 50 % over rugged terrain, and that this bias originates from the assumption of isotropic surface reflection. To interpret the across-track bias with the DAK radiative transfer model, we implement the Bidirectional Reflectance Distribution Function (BRDF) from the Ross-Li semi-empirical model. Testing our implementation against state-of-art RTMs LIDORT and SCIATRAN, we find that simulated TOA reflectance generally agrees to within 1 %. By replacing the assumption of isotropic surface reflection in the cloud retrievals over vegetated scenes with scattering kernels and corresponding BRDF parameters from a daily, high-resolution database derived from 16 years' worth of MODIS measurements, the East-West bias in the retrieved cloud fractions largely vanishes. We conclude that across-track biases in cloud fractions can be explained by cloud algorithms not adequately accounting for the effects of surface reflectance anisotropy. The implications for NO2 air mass factor (AMF) calculations are substantial. Under moderately polluted NO2 and backscatter conditions, clear-sky AMFs are up to 20 % higher and cloud radiance fractions up to 40 % lower if surface anisotropic reflection is accounted for. The combined effect of these changes is that NO2 total AMFs increase by up to 30 % for backscatter geometries (and decrease by up to 35 % for forward scattering geometries), stronger than the effect of either contribution alone. In an unpolluted troposphere, surface BRDF effects on cloud fraction counteract (and largely cancel) the effect on the clear-sky AMF. Our results emphasize that surface reflectance anisotropy needs to be taken into account in a coherent manner for more realistic and accurate retrievals of clouds and NO2 from UV/Vis satellite sensors. These improvements will be beneficial for current sensors, in particular for the recently launched TROPOMI instrument with a high spatial resolution.


2020 ◽  
Vol 12 (17) ◽  
pp. 2752
Author(s):  
Christopher O. Ilori ◽  
Anders Knudby

Physics-based radiative transfer model (RTM) inversion methods have been developed and implemented for satellite-derived bathymetry (SDB); however, precise atmospheric correction (AC) is required for robust bathymetry retrieval. In a previous study, we revealed that biases from AC may be related to imaging and environmental factors that are not considered sufficiently in all AC algorithms. Thus, the main aim of this study is to demonstrate how AC biases related to environmental factors can be minimized to improve SDB results. To achieve this, we first tested a physics-based inversion method to estimate bathymetry for a nearshore area in the Florida Keys, USA. Using a freely available water-based AC algorithm (ACOLITE), we used Landsat 8 (L8) images to derive per-pixel remote sensing reflectances, from which bathymetry was subsequently estimated. Then, we quantified known biases in the AC using a linear regression that estimated bias as a function of imaging and environmental factors and applied a correction to produce a new set of remote sensing reflectances. This correction improved bathymetry estimates for eight of the nine scenes we tested, with the resulting changes in bathymetry RMSE ranging from +0.09 m (worse) to −0.48 m (better) for a 1 to 25 m depth range, and from +0.07 m (worse) to −0.46 m (better) for an approximately 1 to 16 m depth range. In addition, we showed that an ensemble approach based on multiple images, with acquisitions ranging from optimal to sub-optimal conditions, can be used to estimate bathymetry with a result that is similar to what can be obtained from the best individual scene. This approach can reduce time spent on the pre-screening and filtering of scenes. The correction method implemented in this study is not a complete solution to the challenge of AC for satellite-derived bathymetry, but it can eliminate the effects of biases inherent to individual AC algorithms and thus improve bathymetry retrieval. It may also be beneficial for use with other AC algorithms and for the estimation of seafloor habitat and water quality products, although further validation in different nearshore waters is required.


Sign in / Sign up

Export Citation Format

Share Document