scholarly journals Glacier Mass Balance in the Nyainqentanglha Mountains between 2000 and 2017 Retrieved from ZiYuan-3 Stereo Images and the SRTM DEM

2020 ◽  
Vol 12 (5) ◽  
pp. 864 ◽  
Author(s):  
Shaoting Ren ◽  
Massimo Menenti ◽  
Li Jia ◽  
Jing Zhang ◽  
Jingxiao Zhang ◽  
...  

Mountain glaciers are excellent indicators of climate change and have an important role in the terrestrial water cycle and food security in many parts of the world. Glaciers are the major water source of rivers and lakes in the Nyainqentanglha Mountains (NM) region, where the glacier area has the second largest extent on the Tibetan Plateau. The potential of the high spatial resolution ZiYuan-3 (ZY-3) Three-Line-Array (TLA) stereo images to retrieve glacier mass balance has not been sufficiently explored. In this study, we optimized the procedure to extract a Digital Elevation Model (DEM) from ZY-3 TLA stereo images and estimated the geodetic mass balance of representative glaciers in the two typical areas of the NM using ZY-3 DEMs and the C-band Shuttle Radar Topography Mission (SRTM) DEM in three periods, i.e., 2000–2013, 2013–2017 and 2000–2017. The results provide detailed information towards better understanding of glacier change and specifically show that: (1) with our new stereo procedure, ZY-3 TLA data can significantly increase point cloud density and decrease invalid data on the glacier surface map to generate a high resolution (5 m) glacier mass balance map; (2) the glacier mass balance in both the Western Nyainqentanglha Mountains (WNM) and Eastern Nyainqentanglha Mountains (ENM) was negative in 2000–2017, and experienced faster mass loss in recent years (2013–2017) in the WNM. Overall, the glaciers in the western and eastern NM show different change patterns since they are influenced by different climate regimes; the glacier mass balances in WNM was –0.22 ± 0.23 m w.e. a−1 and –0.43 ± 0.06 m w.e. a−1 in 2000–2013 and 2013–2017, respectively, while in 2000–2017, it was –0.30 ± 0.19 m w.e. a−1 in the WNM and –0.56 ± 0.20 m w.e. a−1 in the ENM; (3) in the WNM, the glaciers experienced mass loss in 2000–2013 and 2013–2017 in the ablation zone, while in the accumulation zone mass increased in 2000–2013 and a large mass loss occurred in 2013–2017; as regards the ENM, the glacier mass balance was negative in 2000–2017 in both zones; (4) glacier mass balance can be affected by the fractional abundance of debris and glacier slope; (5) the glacier mass balances retrieved by ZY-3 and TanDEM-X data agreed well in the ablation zone, while a large difference occurred in the accumulation zone because of the snow/firn penetration of the X-band SAR signal.

1996 ◽  
Vol 42 (142) ◽  
pp. 454-460 ◽  
Author(s):  
Koji Fujita ◽  
Katsumoto Seko ◽  
Yutaka Ageta ◽  
Pu Jianchen ◽  
Yao Tandong

AbstractThe relations between mass balance and meltwater refreezing were examined on the basis of glaciological observations carried out in summer 1993 on Xiao Dongkemadi Glacier, Tanggula Mountains, central Tibetan Plateau. On this glacier, a part of meltwaler refreezes at the snow/ice interface as superimposed ice. The amount of superimposed ice formation was determined by both meltwater supply and temperature condition of the glacier. Snow-layer thickness on the glacier ice body is less than 2 m, even in the higher accumulation zone. About 60% of meltwaler generated in the accumulation zone for the period May–September was trapped at the snow/ice interface by refreezing, and was not discharged out of the glacier. About 26% of accumulated snow to the glacier surface was replaced on the snow/ice interface by refreezing in the accumulation zone. These facts indicate that superimposed ice formation is quite significant for water retention in glaciers under low-precipitation conditions.


1996 ◽  
Vol 42 (142) ◽  
pp. 454-460 ◽  
Author(s):  
Koji Fujita ◽  
Katsumoto Seko ◽  
Yutaka Ageta ◽  
Pu Jianchen ◽  
Yao Tandong

AbstractThe relations between mass balance and meltwater refreezing were examined on the basis of glaciological observations carried out in summer 1993 on Xiao Dongkemadi Glacier, Tanggula Mountains, central Tibetan Plateau. On this glacier, a part of meltwaler refreezes at the snow/ice interface as superimposed ice. The amount of superimposed ice formation was determined by both meltwater supply and temperature condition of the glacier. Snow-layer thickness on the glacier ice body is less than 2 m, even in the higher accumulation zone. About 60% of meltwaler generated in the accumulation zone for the period May–September was trapped at the snow/ice interface by refreezing, and was not discharged out of the glacier. About 26% of accumulated snow to the glacier surface was replaced on the snow/ice interface by refreezing in the accumulation zone. These facts indicate that superimposed ice formation is quite significant for water retention in glaciers under low-precipitation conditions.


2017 ◽  
Vol 63 (238) ◽  
pp. 343-354 ◽  
Author(s):  
LOUIS C. SASS ◽  
MICHAEL G. LOSO ◽  
JASON GECK ◽  
EVAN E. THOMS ◽  
DANIEL MCGRATH

ABSTRACTWe analyzed glacier surface elevations (1957, 2010 and 2015) and surface mass-balance measurements (2008–2015) on the 30 km2Eklutna Glacier, in the Chugach Mountains of southcentral Alaska. The geodetic mass balances from 1957 to 2010 and 2010 to 2015 are −0.52 ± 0.46 and −0.74 ± 0.10 m w.e. a−1, respectively. The glaciological mass balance of −0.73 m w.e. a−1from 2010 to 2015 is indistinguishable from the geodetic value. Even after accounting for loss of firn in the accumulation zone, we found most of the mass loss over both time periods was from a broad, low-slope basin that includes much of the accumulation zone of the main branch. Ice-equivalent surface elevation changes in the basin were −1.0 ± 0.8 m a−1from 1957 to 2010, and −0.6 ± 0.1 m a−1from 2010 to 2015, shifting the glacier hypsometry downward and resulting in more negative mass balances: an altitude-mass-balance feedback. Net mass loss from Eklutna Glacier accounts for 7 ± 1% of the average inflow to Eklutna Reservoir, which is entirely used for water and power by Anchorage, Alaska's largest city. If the altitude-mass-balance feedback continues, this ‘deglaciation discharge dividend’ is likely to increase over the short-term before it eventually decreases due to diminishing glacier area.


2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2021 ◽  
Author(s):  
Achille Jouberton ◽  
Thomas E. Shaw ◽  
Evan Miles ◽  
Shaoting Ren ◽  
Wei Yang ◽  
...  

<p>Glaciers are key components of the water towers of Asia and as such are relied upon by large downstream communities for domestic, agricultural and industrial uses. They have experienced considerable shrinking over the last decades, with some of the highest rates of mass loss observed in the south-eastern part of the Tibetan Plateau, where mass loss is also accelerating.  Despite these rapid changes, Tibetan glaciers’ changing role in catchment hydrology remains largely unknown. Parlung No.4 Glacier is considered as a benchmark glacier in this region, since its meteorology, surface energy fluxes and mass-balance have been examined since 2006. It is a maritime glacier with a spring (April-May) accumulation regime , which is followed by a period of ablation during the Indian Summer Monsoon (typically June-September). Here, we conduct a glacio-hydrological study over a period of five decades (1978-2018) using a fully distributed model for glacier mass balance and runoff simulation (TOPKAPI-ETH). We force the model with ERA5-Land and China Meteorological Forcing Dataset (CMFD) climate reanalysis downscaled to a local weather station to reconstruct meteorological time series at an hourly resolution. TOPKAPI-ETH is calibrated and validated with automatic weather station data, discharge measurements, geodetic mass balance, stake measurements and snow cover data from MODIS. We find a very clear acceleration in mass loss from 2000 onwards, which is mostly explained by an increase in temperature. This influence however was initially compensated by an increase in precipitation until the 2000’s, which attenuated the negative trend. Our results also indicate that the increase in the liquid-solid precipitation ratio has reduced the amount of seasonal accumulation, exacerbating annual mass loss. We demonstrate that the southern westerlies and the associated spring precipitation have as much influence on the glacier mass balance and catchment discharge as the Indian Summer Monsoon, by controlling seasonal snowpack development, which simultaneously provides mass to the glacier and protects it from melting in the early stage of the monsoon.</p>


2017 ◽  
Vol 11 (5) ◽  
pp. 2247-2264 ◽  
Author(s):  
Douglas I. Benn ◽  
Sarah Thompson ◽  
Jason Gulley ◽  
Jordan Mertes ◽  
Adrian Luckman ◽  
...  

Abstract. We provide the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: (1) a seasonal subglacial drainage system below the upper ablation zone; (2) supraglacial channels, allowing efficient meltwater transport across parts of the upper ablation zone; (3) sub-marginal channels, allowing long-distance transport of meltwater; (4) perched ponds, which intermittently store meltwater prior to evacuation via the englacial drainage system; (5) englacial cut-and-closure conduits, which may undergo repeated cycles of abandonment and reactivation; and (6) a "base-level" lake system (Spillway Lake) dammed behind the terminal moraine. The distribution and relative importance of these elements has evolved through time, in response to sustained negative mass balance. The area occupied by perched ponds has expanded upglacier at the expense of supraglacial channels, and Spillway Lake has grown as more of the glacier surface ablates to base level. Subsurface processes play a governing role in creating, maintaining, and shutting down exposures of ice at the glacier surface, with a major impact on spatial patterns and rates of surface mass loss. Comparison of our results with observations on other glaciers indicate that englacial drainage systems play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.


2016 ◽  
Author(s):  
D. Treichler ◽  
A. Kääb

Abstract. Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003–2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM and a high resolution LiDAR DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs – a result of spatio-temporal merging – has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around −0.30 m ± 0.06 ice per year. This regional estimate agrees well with the heterogeneous but overall negative in-situ glacier mass balance observed in the area. ICESat matches glacier size distribution of the study area well and measures also small ice patches not commonly monitored in-situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns also fit to observed in-situ glacier mass balance. Our correction has the potential to improve glacier trend significance also for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM, or as a consequence from mosaicking and merging that is common for national or global DEMs.


2021 ◽  
Vol 13 (8) ◽  
pp. 3791-3818
Author(s):  
Dorothea Stumm ◽  
Sharad Prasad Joshi ◽  
Tika Ram Gurung ◽  
Gunjan Silwal

Abstract. The glacier mass balance is an important variable to describe the climate system and is used for various applications like water resource management or runoff modelling. The direct or glaciological method and the geodetic method are the standard methods to quantify glacier mass changes, and both methods are an integral part of international glacier monitoring strategies. In 2011, we established two glacier mass-balance programmes on Yala and Rikha Samba glaciers in the Nepal Himalaya. Here we present the methods and data of the directly measured annual mass balances for the first six mass-balance years for both glaciers from 2011/2012 to 2016/2017. For Yala Glacier we additionally present the directly measured seasonal mass balance from 2011 to 2017, as well as the mass balance from 2000 to 2012 obtained with the geodetic method. In addition, we analysed glacier length changes for both glaciers. The directly measured average annual mass-balance rates of Yala and Rikha Samba glaciers are −0.80 ± 0.28 and −0.39 ± 0.32 m w.e. a−1, respectively, from 2011 to 2017. The geodetically measured annual mass-balance rate of Yala Glacier based on digital elevation models from 2000 and 2012 is −0.74 ± 0.53 m w.e. The cumulative mass loss for the period 2011 to 2017 for Yala and Rikha Samba glaciers is −4.80 ± 0.69 and −2.34 ± 0.79 m w.e., respectively. The mass loss on Yala Glacier from 2000 to 2012 is −8.92 ± 6.33 m w.e. The winter balance of Yala Glacier is positive, and the summer balance is negative in every investigated year. The summer balance determines the annual balance. Compared to regional mean geodetic mass-balance rates in the Nepalese Himalaya, the mean mass-balance rate of Rikha Samba Glacier is in a similar range, and the mean mass-balance rate of Yala Glacier is more negative because of the small and low-lying accumulation area. During the study period, a change of Yala Glacier's surface topography has been observed with glacier thinning and downwasting. The retreat rates of Rikha Samba Glacier are higher than for Yala Glacier. From 1989 to 2013, Rikha Samba Glacier retreated 431 m (−18.0 m a−1), and from 1974 to 2016 Yala Glacier retreated 346 m (−8.2 m a−1). The data of the annual and seasonal mass balances, point mass balance, geodetic mass balance, and length changes are accessible from the World Glacier Monitoring Service (WGMS, 2021), https://doi.org/10.5904/wgms-fog-2021-05.


2017 ◽  
Author(s):  
Douglas I. Benn ◽  
Sarah Thompson ◽  
Jason Gulley ◽  
Jordan Mertes ◽  
Adrian Luckman ◽  
...  

Abstract. This paper provides the first synoptic view of the drainage system of a Himalayan debris-covered glacier and its evolution through time, based on speleological exploration and satellite image analysis of Ngozumpa Glacier, Nepal. The drainage system has several linked components: 1) a seasonal subglacial drainage system below the upper ablation zone; 2) supraglacial channels allowing efficient meltwater transport across parts of the upper ablation zone; 3) sub-marginal channels, allowing long-distance transport of meltwater; 4) perched lakes, which intermittently store meltwater prior to evacuation via the englacial drainage system; 5) englacial cut-and-closure conduits, which may undergo repeated cycles of abandonment and reactivation; 6) a 'base-level' lake system (Spillway Lake) dammed behind the terminal moraine. The distribution and relative importance of these elements has evolved through time, in response to sustained negative mass balance. The area occupied by perched lakes has expanded upglacier at the expense of supraglacial channels, and Spillway Lake has grown as more of the glacier surface ablates to base level. Subsurface processes play a governing role in creating, maintaining and shutting down exposures of ice at the glacier surface, with a major impact on spatial patterns and rates of surface mass loss. Comparison of our results with observations on other glaciers indicate that englacial drainage systems play a key role in the response of debris-covered glaciers to sustained periods of negative mass balance.


2016 ◽  
Author(s):  
Adam M. Clark ◽  
Daniel B. Fagre ◽  
Erich H. Peitzsch ◽  
Blase A. Reardon ◽  
Joel T. Harper

Abstract. Glacier mass balance measurements help to provide an understanding of the behavior of glaciers and their response to local and regional climate influences. In 2005, the United States Geological Survey established a surface mass balance monitoring program on Sperry Glacier, Montana, USA. This program is the first quantitative study of mass changes of a glacier in this region and continues to the present. This paper describes the methods used during the first eleven years of measurements and reports the associated results. Between years 2005–2015, we estimate Sperry Glacier lost approximately 4.37 m of water equivalent averaged over its entire area. The mean winter, summer, and annual glacier-wide mass balances were 2.92 m per year, −3.41 m per year, and −0.40 m per year respectively. We derive these cumulative and mean results from an expansive dataset of snow depth, snow density, and ablation measurements taken at selected points on the glacier, the resultant mass balance point values for these measurement sites, and a time series of seasonal and annual glacier-wide mass balances for all eleven measurement years. We also provide measurements of total glacier surface and accumulation areas for select years. All data have been submitted to the World Glacier Monitoring Service and are available at http://dx.doi.org/10.5904/wgms-fog-2016-08. This foundational data enhances our basic understanding of mass balance of Sperry Glacier, and future work will focus on the processes that control accumulation and ablation patterns across the glacier.


Sign in / Sign up

Export Citation Format

Share Document