scholarly journals Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe

2020 ◽  
Vol 12 (9) ◽  
pp. 1369 ◽  
Author(s):  
José Lucas Safanelli ◽  
Sabine Chabrillat ◽  
Eyal Ben-Dor ◽  
José A. M. Demattê

Reflectance of light across the visible, near-infrared and shortwave infrared (VIS-NIR-SWIR, 0.4–2.5 µm) spectral region is very useful for investigating mineralogical, physical and chemical properties of soils, which can reduce the need for traditional wet chemistry analyses. As many collections of multispectral satellite data are available for environmental studies, a large extent with medium resolution mapping could be benefited from the spectral measurements made from remote sensors. In this paper, we explored the use of bare soil composites generated from the large historical collections of Landsat images for mapping cropland topsoil attributes across the European extent. For this task, we used the Geospatial Soil Sensing System (GEOS3) for generating two bare soil composites of 30 m resolution (named synthetic soil images, SYSI), which were employed to represent the median topsoil reflectance of bare fields. The first (framed SYSI) was made with multitemporal images (2006–2012) framed to the survey time of the Land-Use/Land-Cover Area Frame Survey (LUCAS) soil dataset (2009), seeking to be more compatible to the soil condition upon the sampling campaign. The second (full SYSI) was generated from the full collection of Landsat images (1982–2018), which although displaced to the field survey, yields a higher proportion of bare areas for soil mapping. For evaluating the two SYSIs, we used the laboratory spectral data as a reference of topsoil reflectance to calculate the Spearman correlation coefficient. Furthermore, both SYSIs employed machine learning for calibrating prediction models of clay, sand, soil organic carbon (SOC), calcium carbonates (CaCO3), cation exchange capacity (CEC), and pH determined in water, using the gradient boosting regression algorithm. The original LUCAS laboratory spectra and a version of the data resampled to the Landsat multispectral bands were also used as reference of prediction performance using VIS-NIR-SWIR multispectral data. Our results suggest that generating a bare soil composite displaced to the survey time of soil observations did not improve the quality of topsoil reflectance, and consequently, the prediction performance of soil attributes. Despite the lower spectral resolution and the variability of soils in Europe, a SYSI calculated from the full collection of Landsat images can be employed for topsoil prediction of clay and CaCO3 contents with a moderate performance (testing R2, root mean square error (RMSE) and ratio of performance to interquartile range (RPIQ) of 0.44, 9.59, 1.77, and 0.36, 13.99, 1.54, respectively). Thus, this study shows that although there exist some constraints due to the spatial and temporal variation of soil exposures and among the Landsat sensors, it is possible to use bare soil composites for mapping key soil attributes of croplands across the European extent.

2021 ◽  
Vol 11 (5) ◽  
pp. 2235
Author(s):  
Haewon Byeon

It is essential to understand the voice characteristics in the normal aging process to accurately distinguish presbyphonia from neurological voice disorders. This study developed the best ensemble-based machine learning classifier that could distinguish hypokinetic dysarthria from presbyphonia using classification and regression tree (CART), random forest, gradient boosting algorithm (GBM), and XGBoost and compared the prediction performance of models. The subjects of this study were 76 elderly patients diagnosed with hypokinetic dysarthria and 174 patients with presbyopia. This study developed prediction models for distinguishing hypokinetic dysarthria from presbyphonia by using CART, GBM, XGBoost, and random forest and compared the accuracy, sensitivity, and specificity of the development models to identify the prediction performance of them. The results of this study showed that random forest had the best prediction performance when it was tested with the test dataset (accuracy = 0.83, sensitivity = 0.90, and specificity = 0.80, and area under the curve (AUC) = 0.85). The main predictors for detecting hypokinetic dysarthria were Cepstral peak prominence (CPP), jitter, shimmer, L/H ratio, L/H ratio_SD, CPP max (dB), CPP min (dB), and CPPF0 in the order of magnitude. Among them, CPP was the most important predictor for identifying hypokinetic dysarthria.


2018 ◽  
Vol 10 (10) ◽  
pp. 1571 ◽  
Author(s):  
Bruna Gallo ◽  
José Demattê ◽  
Rodnei Rizzo ◽  
José Safanelli ◽  
Wanderson Mendes ◽  
...  

The mapping of soil attributes provides support to agricultural planning and land use monitoring, which consequently aids the improvement of soil quality and food production. Landsat 5 Thematic Mapper (TM) images are often used to estimate a given soil attribute (i.e., clay), but have the potential to model many other attributes, providing input for soil mapping applications. In this paper, we aim to evaluate a Bare Soil Composite Image (BSCI) from the state of São Paulo, Brazil, calculated from a multi-temporal dataset, and study its relationship with topsoil properties, such as soil class and geology. The method presented detects bare soil in satellite images in a time series of 16 years, based on Landsat 5 TM observations. The compilation derived a BSCI for the agricultural sites (242,000 hectare area) characterized by very complex geology. Soil properties were analyzed to calibrate prediction models using 740 soil samples (0–20 cm) collected of the area. Partial least squares regression (PLSR) based on the BSCI spectral dataset was performed to quantify soil attributes. The method identified that a single image represents 7 to 20% of bare soil while the compilation of the multi-temporal dataset increases to 53%. Clay content had the best soil attribute prediction estimates (R2 = 0.75, root mean square error (RMSE) = 89.84 g kg−1, and accuracy = 74%). Soil organic matter, cation exchange capacity and sandy soils also achieved moderate predictions. The BSCI demonstrates a strong relationship with legacy geological maps detecting variations in soils. From a single composite image, it was possible to use spectroscopy to evaluate several environmental parameters. This technique could greatly improve soil mapping and consequently aid several applications, such as land use planning, environmental monitoring, and prevention of land degradation, updating legacy surveys and digital soil mapping.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14530-e14530
Author(s):  
Petri Bono ◽  
Jussi Ekström ◽  
Matti K Karvonen ◽  
Jami Mandelin ◽  
Jussi Koivunen

e14530 Background: Bexmarilimab, an investigational immunotherapeutic antibody targeting Clever-1, is currently investigated in phase I/II MATINS study (NCT03733990) for advanced solid tumors. Machine learning (ML) based models combining extensive data could be generated to predict treatment responses to this first-in-class macrophage checkpoint inhibitor. Methods: 58 baseline features from 30 patients included in the part 1 of phase I/II MATINS trial were included in ML modelling. Seven patients were classified as benefitting from the therapy by RECIST 1.1 (PR or SD response in target or non-target lesions). Initial feature selection was done using a combination of domain knowledge and removal of features with several missing values resulting in 20 clinically relevant features from 25 patients. The remaining data was standardized and feature selection using variance analysis (ANOVA) based on F-values between response and features was performed. With this approach, the number of features could be further reduced as the prediction performance increased until the most important features were included in the model. Several prediction models were trained, and prediction performance evaluated using leave-one-out cross-validation (LOOCV), with and without SMOTE oversampling of the positive class of the training data inside each LOOCV fold. In LOOCV the prediction model was trained 25 times. Stacked meta classifier with SMOTE oversampling combining three classifiers: elastic-net logistic regression, random forest and extreme gradient boosting was chosen as the best performing prediction model. Results: Seven baseline features were associated with bexmarilimab treatment benefit. Increasing bexmarilimab dose and high tumor FoxP3 cells showed positive benefit. On contrary, high baseline blood neutrophils, CD4, T-cells, B-cells, and CXCL10 indicated negative relationship to the treatment benefit. The ML model trained with these seven features performed well in LOOCV as 6/7 benefitting and 16/18 non-benefitting were classified correctly, and all considered classification performance metrics were good. In feature importance analysis, low baseline CXCL10 and neutrophils were characterized as the most important predictors for treatment benefit with values of 0.19 and 0.16. Conclusions: This study highlights possibility of using ML models in predicting treatment benefit for novel cancer drugs such as bexmarilimab and boost the clinical development. These findings are in line of expected immune activation of bexmarilimab treatment. The generated ML models should be further validated in a larger patient cohort. Clinical trial information: NCT03733990.


2018 ◽  
Vol 7 (4) ◽  
pp. 80 ◽  
Author(s):  
Ahmed Rady ◽  
Shinta Sugiharto ◽  
Akinboe Adedeji

Carrot has a relatively high content of Vitamin C and it is a major source of natural carotenoids. However, carrot has a short shelf-life and is better consumed fresh. A quick assessment of its quality attributes is important to preserving its freshness. The objective of this study was to apply Vis-NIR spectroscopy to noninvasively assess and predict the various quality attributes of carrot (cv. Nectar), namely color (L*a*b*), moisture content (MC), total soluble solids (TSS), firmness, Vitamin C, and β-carotene. Two spectroscopic sensors (400-1,000 nm and 900-1,700 nm) were utilized and samples included whole root and 25.4 mm thick sliced disc. The best prediction models using partial least squares regression yielded correlation coefficient, r, and ratio of performance to deviation or r(RPD) of 0.50(0.73), 0.84(0.88), 0.86(2.07), 0.69(0.66), 0.97(1.44), 0.90(1.49), 0.47(1.47), and 0.92(1.76) for color indices, L* a* b*, firmness, MC, TSS, Vitamin C, and β-carotene, respectively. However, using only the wavelengths selected by interval partial least squares, the r(RPD) values for the aforementioned attributes improved and are presented as follows: 0.92(1.97), 0.96(2.83), 0.98(5.85), 0.99(6.65), 0.98(3.91), 0.99(5.93), 0.98(4.16), and 0.98(4.43), respectively. Generally, Vis-NIR region had higher prediction performance than NIR region, and whole roots had similar prediction performance as sliced samples. This study shows that rapid determination of quality parameters of carrot is possible through non-destructive Vis-NIR sensing, which could be useful for quality tracking during carrot supply chain. Moreover, results of this study could be improved using a larger sample size. 


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


2021 ◽  
Vol 15 (2) ◽  
pp. 1-25
Author(s):  
Jifeng Zhang ◽  
Wenjun Jiang ◽  
Jinrui Zhang ◽  
Jie Wu ◽  
Guojun Wang

Event-based social networks (EBSNs) connect online and offline lives. They allow online users with similar interests to get together in real life. Attendance prediction for activities in EBSNs has attracted a lot of attention and several factors have been studied. However, the prediction accuracy is not very good for some special activities, such as outdoor activities. Moreover, a very important factor, the weather, has not been well exploited. In this work, we strive to understand how the weather factor impacts activity attendance, and we explore it to improve attendance prediction from the organizer’s view. First, we classify activities into two categories: the outdoor and the indoor activities. We study the different ways that weather factors may impact these two kinds of activities. We also introduce a new factor of event duration. By integrating the above factors with user interest and user-event distance, we build a model of attendance prediction with the weather named GBT-W , based on the Gradient Boosting Tree. Furthermore, we develop a platform to help event organizers estimate the possible number of activity attendance with different settings (e.g., different weather, location) to effectively plan their events. We conduct extensive experiments, and the results show that our method has a better prediction performance on both the outdoor and the indoor activities, which validates the reasonability of considering weather and duration.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Can Trong Nguyen ◽  
Amnat Chidthaisong ◽  
Phan Kieu Diem ◽  
Lian-Zhi Huo

Bare soil is a critical element in the urban landscape and plays an essential role in urban environments. Yet, the separation of bare soil and other land cover types using remote sensing techniques remains a significant challenge. There are several remote sensing-based spectral indices for barren detection, but their effectiveness varies depending on land cover patterns and climate conditions. Within this research, we introduced a modified bare soil index (MBI) using shortwave infrared (SWIR) and near-infrared (NIR) wavelengths derived from Landsat 8 (OLI—Operational Land Imager). The proposed bare soil index was tested in two different bare soil patterns in Thailand and Vietnam, where there are large areas of bare soil during the agricultural fallow period, obstructing the separation between bare soil and urban areas. Bare soil extracted from the MBI achieved higher overall accuracy of about 98% and a kappa coefficient over 0.96, compared to bare soil index (BSI), normalized different bare soil index (NDBaI), and dry bare soil index (DBSI). The results also revealed that MBI considerably contributes to the accuracy of land cover classification. We suggest using the MBI for bare soil detection in tropical climatic regions.


Sign in / Sign up

Export Citation Format

Share Document