scholarly journals Navigation Engine Design for Automated Driving Using INS/GNSS/3D LiDAR-SLAM and Integrity Assessment

2020 ◽  
Vol 12 (10) ◽  
pp. 1564 ◽  
Author(s):  
Kai-Wei Chiang ◽  
Guang-Je Tsai ◽  
Yu-Hua Li ◽  
You Li ◽  
Naser El-Sheimy

Automated driving has made considerable progress recently. The multisensor fusion system is a game changer in making self-driving cars possible. In the near future, multisensor fusion will be necessary to meet the high accuracy needs of automated driving systems. This paper proposes a multisensor fusion design, including an inertial navigation system (INS), a global navigation satellite system (GNSS), and light detection and ranging (LiDAR), to implement 3D simultaneous localization and mapping (INS/GNSS/3D LiDAR-SLAM). The proposed fusion structure enhances the conventional INS/GNSS/odometer by compensating for individual drawbacks such as INS-drift and error-contaminated GNSS. First, a highly integrated INS-aiding LiDAR-SLAM is presented to improve the performance and increase the robustness to adjust to varied environments using the reliable initial values from the INS. Second, the proposed fault detection exclusion (FDE) contributes SLAM to eliminate the failure solutions such as local solution or the divergence of algorithm. Third, the SLAM position velocity acceleration (PVA) model is used to deal with the high dynamic movement. Finally, an integrity assessment benefits the central fusion filter to avoid failure measurements into the update process based on the information from INS-aiding SLAM, which increases the reliability and accuracy. Consequently, our proposed multisensor design can deal with various situations such as long-term GNSS outage, deep urban areas, and highways. The results show that the proposed method can achieve an accuracy of under 1 meter in challenging scenarios, which has the potential to contribute the autonomous system.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


Author(s):  
Y.-H. Lu ◽  
J.-Y. Han

Abstract. Global Navigation Satellite System (GNSS) is a matured modern technique for spatial data acquisition. Its performance has a great correlation with GNSS receiver position. However, high-density building in urban areas causes signal obstructions and thus hinders GNSS’s serviceability. Consequently, GNSS positioning is weakened in urban areas, so deriving proper improvement resolutions is a necessity. Because topographic effects are considered the main factor that directly block signal transmission between satellites and receivers, this study integrated aerial borne LiDAR point clouds and a 2D building boundary map to provide reliable 3D spatial information to analyze topographic effects. Using such vector data not only reflected high-quality GNSS satellite visibility calculations, but also significantly reduced data amount and processing time. A signal obstruction analysis technique and optimized computational algorithm were also introduced. In conclusion, this paper proposes using superimposed column method to analyze GNSS receivers’ surrounding environments and thus improve GNSS satellite visibility predictions in an efficient and reliable manner.


Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 79
Author(s):  
Dimitrios Chatziparaschis ◽  
Michail G. Lagoudakis ◽  
Panagiotis Partsinevelos

Humanitarian Crisis scenarios typically require immediate rescue intervention. In many cases, the conditions at a scene may be prohibitive for human rescuers to provide instant aid, because of hazardous, unexpected, and human threatening situations. These scenarios are ideal for autonomous mobile robot systems to assist in searching and even rescuing individuals. In this study, we present a synchronous ground-aerial robot collaboration approach, under which an Unmanned Aerial Vehicle (UAV) and a humanoid robot solve a Search and Rescue scenario locally, without the aid of a commonly used Global Navigation Satellite System (GNSS). Specifically, the UAV uses a combination of Simultaneous Localization and Mapping and OctoMap approaches to extract a 2.5D occupancy grid map of the unknown area in relation to the humanoid robot. The humanoid robot receives a goal position in the created map and executes a path planning algorithm in order to estimate the FootStep navigation trajectory for reaching the goal. As the humanoid robot navigates, it localizes itself in the map while using an adaptive Monte-Carlo Localization algorithm by combining local odometry data with sensor observations from the UAV. Finally, the humanoid robot performs visual human body detection while using camera data through a Darknet pre-trained neural network. The proposed robot collaboration scheme has been tested under a proof of concept setting in an exterior GNSS-denied environment.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4059
Author(s):  
Nobuaki Kubo ◽  
Kaito Kobayashi ◽  
Rei Furukawa

The reduction of multipath errors is a significant challenge in the Global Navigation Satellite System (GNSS), especially when receiving non-line-of-sight (NLOS) signals. However, selecting line-of-sight (LOS) satellites correctly is still a difficult task in dense urban areas, even with the latest GNSS receivers. This study demonstrates a new method of utilization of C/N0 of the GNSS to detect NLOS signals. The elevation-dependent threshold of the C/N0 setting may be effective in mitigating multipath errors. However, the C/N0 fluctuation affected by NLOS signals is quite large. If the C/N0 is over the threshold, the satellite is used for positioning even if it is still affected by the NLOS signal, which causes the positioning error to jump easily. To overcome this issue, we focused on the value of continuous time-series C/N0 for a certain period. If the C/N0 of the satellite was less than the determined threshold, the satellite was not used for positioning for a certain period, even if the C/N0 recovered over the threshold. Three static tests were conducted at challenging locations near high-rise buildings in Tokyo. The results proved that our method could substantially mitigate multipath errors in differential GNSS by appropriately removing the NLOS signals. Therefore, the performance of real-time kinematic GNSS was significantly improved.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Sakpod Tongleamnak ◽  
Masahiko Nagai

Performance of Global Navigation Satellite System (GNSS) positioning in urban environments is hindered by poor satellite availability because there are many man-made and natural objects in urban environments that obstruct satellite signals. To evaluate the availability of GNSS in cities, this paper presents a software simulation of GNSS availability in urban areas using a panoramic image dataset from Google Street View. Photogrammetric image processing techniques are applied to reconstruct fisheye sky view images and detect signal obstacles. Two comparisons of the results from the simulation and real world observation in Bangkok and Tokyo are also presented and discussed for accuracy assessment.


2017 ◽  
Vol 37 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Robert A Hewitt ◽  
Evangelos Boukas ◽  
Martin Azkarate ◽  
Marco Pagnamenta ◽  
Joshua A Marshall ◽  
...  

This paper describes a dataset collected along a 1 km section of beach near Katwijk, The Netherlands, which was populated with a collection of artificial rocks of varying sizes to emulate known rock size densities at current and potential Mars landing sites. First, a fixed-wing unmanned aerial vehicle collected georeferenced images of the entire area. Then, the beach was traversed by a rocker-bogie-style rover equipped with a suite of sensors that are envisioned for use in future planetary rover missions. These sensors, configured so as to emulate the ExoMars rover, include stereo cameras, and time-of-flight and scanning light-detection-and-ranging sensors. This dataset will be of interest to researchers developing localization and mapping algorithms for vehicles traveling over natural and unstructured terrain in environments that do not have access to the global navigation satellite system, and where only previously taken satellite or aerial imagery is available.


1998 ◽  
Vol 51 (3) ◽  
pp. 382-393 ◽  
Author(s):  
M. Tsakiri ◽  
M. Stewart ◽  
T. Forward ◽  
D. Sandison ◽  
J. Walker

The increasing volume of traffic in urban areas has resulted in steady growth of the mean driving time on fixed routes. Longer driving times lead to significantly higher transportation costs, particularly for vehicle fleets, where efficiency in the distribution of their transport tasks is important in staying competitive in the market. For bus fleets, the optimal control and command of the vehicles is, as well as the economic requirements, a basic function of their general mission. The Global Positioning System (GPS) allows reliable and accurate positioning of public transport vehicles except within the physical limitations imposed by built-up city ‘urban canyons’. With a view to the next generation of satellite positioning systems for public transport fleet management, this paper highlights the limitations imposed on current GPS systems operating in the urban canyon. The capabilities of a future positioning system operating in this type of environment are discussed. It is suggested that such a system could comprise receivers capable of integrating the Global Positioning System (GPS) and the Russian equivalent, the Global Navigation Satellite System (GLONASS), and relatively cheap dead-reckoning sensors.


Author(s):  
M. Nakagawa ◽  
M. Taguchi

Abstract. In this paper, we focus on the development of intelligent construction vehicles to improve the safety of workers in construction sites. Generally, global navigation satellite system positioning is utilized to obtain the position data of workers and construction vehicles. However, construction fields in urban areas have poor satellite positioning environments. Therefore, we have developed a 3D sensing unit mounted on a construction vehicle for worker position data acquisition. The unit mainly consists of a multilayer laser scanner. We propose a real-time object measurement, classification and tracking methodology with the multilayer laser scanner. We also propose a methodology to estimate and visualize object behaviors with a spatial model based on a space subdivision framework consisting of agents, activities, resources, and modifiers. We applied the space subdivision framework with a geofencing approach using real-time object classification and tracking results estimated from temporal point clouds. Our methodology was evaluated using temporal point clouds acquired from a construction vehicle in drilling works.


2021 ◽  
Vol 873 (1) ◽  
pp. 012044
Author(s):  
I Gumilar ◽  
TP. Sidiq ◽  
I Meilano ◽  
B Bramanto ◽  
G Pambudi

Abstract Gedebage district is presently experiencing rapid and mass infrastructure development and becoming one of the developed districts in Bandung, Indonesia. A football stadium, several luxury housing, the grand mosque of West Java province, and a business center have been built in this district. However, it is well known that the Gedebage district has turned into one of the Bandung districts that suffers from land subsidence phenomena. Since 2000, the Gedebage district has suffered land subsidence at an average rate of 10 cm per year and becoming one of the fastest sinking districts in Bandung. This fast land subsidence phenomenon is suspected of affecting the infrastructure in this district. Therefore, this work aims to capture the current subsidence rate in the Gedebage district using the geodetic approach of the combination of the Global Navigation Satellite System (GNSS) with Interferometric Synthetic Aperture Radar (InSAR) and investigate the impact of land subsidence on infrastructures in Gedebage district. We use GNSS campaign datasets from the years 2016 and 2019. Each GNSS campaign was performed at least 10-12 hours of observations. We also utilize a similar period of 2016 to 2019 for the InSAR datasets. Utilizing both GNSS and InSAR datasets, we can capture the subsidence with the rate reaching 4 -15 cm per year between 2016 and 2019, and it occurs uniformly in this district. The impact of land subsidence occurred in almost all urban areas in the Gedebage district. These impacts include cracks in buildings, bridges and roads, and also tilted buildings.


Sign in / Sign up

Export Citation Format

Share Document