scholarly journals Assessment of the Characteristics of Recent Major Wildfires in the USA, Australia and Brazil in 2018–2019 Using Multi-Source Satellite Products

2020 ◽  
Vol 12 (11) ◽  
pp. 1803 ◽  
Author(s):  
Mahlatse Kganyago ◽  
Lerato Shikwambana

This study analysed the characteristics of the recent (2018–2019) wildfires that occurred in the USA, Brazil, and Australia using Moderate Resolution Imaging Spectroradiometer (MODIS) active fires (AF), fire radiative power (FRP, MW) and burned area (BA) products. Meteorological and environmental parameters were also analysed. The study found various patterns in the spatial distribution of fires, FRP and BA at the three sites, associated with various vegetation compositions, prevailing meteorological and environmental conditions and anthropogenic activities. We found significant fire clusters along the western and eastern coasts of the USA and Australia, respectively, while vastly distributed clusters were found in Brazil. Across all sites, significant fire intensity was recorded over forest cover (FC) and shrublands (SL), attributed to highly combustible tree crown fuel load characterised by leafy canopies and thin branches. In agreement, BA over FC was the highest in the USA and Australia, while Brazil was dominated by the burning of SL, characteristic of fire-tolerant Cerrado. The relatively lower BA over FC in Brazil can be attributed to fuel availability and proximity to highly flammable cover types such as cropland, SL and grasslands rather than fuel flammability. Overall, this study contributes to a better understanding of wildfires in various regions and the underlying environmental and meteorological causal factors, towards better wildfire disaster management strategies and habitat-specific firefighting.

2013 ◽  
Vol 13 (11) ◽  
pp. 28453-28510
Author(s):  
S. F. Schreier ◽  
A. Richter ◽  
J. W. Kaiser ◽  
J. P. Burrows

Abstract. Nitrogen oxides (NOx) play key roles in atmospheric chemistry, air pollution, and climate. While the largest fraction of these reactive gases is released by anthropogenic emission sources, a significant amount can be attributed to vegetation fires. In this study, NO2 from GOME-2 on board EUMETSAT's MetOp-A and OMI on board NASA's Aura as well as fire radiative power (FRP) from the measurements of MODIS on board NASA's Terra and Aqua are used to derive fire emission rates (FERs) of NOx for different types of vegetation using a simple statistical approach. Monthly means of tropospheric NO2 vertical columns (TVC NO2) have been analyzed for their temporal correlation with the monthly means of FRP for five consecutive years from 2007 to 2011 on a horizontal 1° × 1° grid. The strongest correlation is found to be largely confined to tropical and subtropical regions, which account for more than 80% of yearly burned area on average globally. In these regions, the seasonal variation of fire intensity, expressed by the FRP data, is similar to the pattern of TVC NO2. As chemical models typically require values for the amount of NOx being released as a function of time, we have converted the retrieved TVC NO2 into production rates of NOx from fire (Pf) by assuming a constant lifetime of NOx. The comparison between Pf and NOx emissions from GFEDv3.1 over 5 characteristic biomass burning regions in the tropics and subtropics indicated good agreement. By separating the monthly means of Pf and FRP according to land cover type, FERs of NOx could be derived for different biomes. The estimated FERs for the dominating types of vegetation burned are lowest for open shrublands and savannas (0.28–1.03 g NOx s−1 MW−1) and highest for croplands and woody savannas (0.82–1.56 g NOx s−1 MW−1). This analysis demonstrates clearly that there are biome-specific, diurnal, and regional differences in FERs for the dominating types of vegetation burned in the tropics and subtropics. Possible factors affecting the magnitude of the obtained values are discussed.


2014 ◽  
Vol 14 (5) ◽  
pp. 2447-2466 ◽  
Author(s):  
S. F. Schreier ◽  
A. Richter ◽  
J. W. Kaiser ◽  
J. P. Burrows

Abstract. Nitrogen oxides (NOx) play key roles in atmospheric chemistry, air pollution, and climate. While the largest fraction of these reactive gases is released by anthropogenic emission sources, a significant amount can be attributed to vegetation fires. In this study, NO2 from GOME-2 on board EUMETSAT's MetOp-A and OMI on board NASA's Aura as well as fire radiative power (FRP) from the measurements of MODIS on board NASA's Terra and Aqua satellites are used to derive fire emission rates (FERs) of NOx for different types of vegetation using a simple statistical approach. Monthly means of tropospheric NO2 vertical columns (TVC NO2) have been analyzed for their temporal correlation with the monthly means of FRP for five consecutive years from 2007 to 2011 on a horizontal 1° × 1° grid. The strongest correlation is found to be largely confined to tropical and subtropical regions, which account for more than 80% of yearly burned area, on average, globally. In these regions, the seasonal variation of fire intensity, expressed by the FRP data, is similar to the pattern of TVC NO2. As chemical models typically require values for the amount of NOx being released as a function of time, we have converted the retrieved TVC NO2 into production rates of NOx from fire (Pf) by assuming a constant lifetime of NOx. The comparison between Pf and NOx emissions from the Global Fire Emissions Database (GFEDv3.1) over 5 characteristic biomass burning regions in the tropics and subtropics shows good agreement. By separating the monthly means of Pf and FRP according to land cover type, FERs of NOx could be derived for different biomes. The estimated FERs for the dominating types of vegetation burned are lowest for open shrublands and savannas (0.28–1.03 g NOx s−1 MW−1) and highest for croplands and woody savannas (0.82–1.56 g NOx s−1 MW−1). This analysis demonstrates that the strong empirical relationship between TVC NO2 and FRP and the following simplified assumptions are a useful tool for the characterization of NOx emission rates from vegetation fires in the tropics and subtropics. Possible factors affecting the magnitude of the obtained values are discussed.


2021 ◽  
Vol 13 (8) ◽  
pp. 1459
Author(s):  
Michael Nolde ◽  
Simon Plank ◽  
Rudolf Richter ◽  
Doris Klein ◽  
Torsten Riedlinger

Wildfires significantly influence ecosystem patterns and processes on a global scale. In many cases, they pose a threat to human lives and property. Through greenhouse gas emissions, wildfires also directly contribute to climate change. The monitoring of such events and the analysis of acquired data is crucial for understanding wildfire and ecosystem interactions. The FireBIRD small satellite mission, operated by the German Aerospace Center (DLR), was specifically designed for the detection of wildfires. It features a higher spatial resolution than available with other Earth-observation systems. In addition to the detection of active fire locations, the system also allows the derivation of fire intensity by means of the Fire Radiative Power (FRP). This indicator can be used as a basis to derive the amount of emitted pollutant, which makes it valuable for climate studies. With the FireBIRD mission facing its end of life in 2021, this study retrospectively evaluates the performance of the system through an inter-comparison with data from two satellite missions of the National Aeronautics and Space Administration (NASA) and discusses the potential of such a system. The comparison is performed regarding both geometrical and radiometric aspects, the latter focusing on the FRP. This study uses and compares two different methods to derive the FRP from FireBIRD data. The data are analyzed regarding six major fire incidents in different regions of the world. The FireBIRD results are in accordance with the reference data, showing a geometrical overlapping rate of 83% and 84% regarding MODIS (Moderate-resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) overpasses in close temporal proximity. Furthermore, the results show a positive bias in FRP of about 11% compared to MODIS.


2019 ◽  
Vol 16 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Pierre Laurent ◽  
Florent Mouillot ◽  
Maria Vanesa Moreno ◽  
Chao Yue ◽  
Philippe Ciais

Abstract. Vegetation fires are an important process in the Earth system. Fire intensity locally impacts fuel consumption, damage to the vegetation, chemical composition of fire emissions and also how fires spread across landscapes. It has been observed that fire occurrence, defined as the frequency of active fires detected by the MODIS sensor, is related to intensity with a hump-shaped empirical relation, meaning that occurrence reaches a maximum at intermediate fire intensity. Raw burned area products obtained from remote sensing can not discriminate between ignition and propagation processes. To go beyond burned area and to test if fire size is driven by fire intensity at a global scale as expected from empirical fire spread models, we used the newly delivered global FRY database, which provides fire patch functional traits based on satellite observation, including fire patch size, and the fire radiative power measures from the MCD14ML dataset. This paper describes the varying relationships between fire size and fire radiative power across biomes at a global scale. We show that in most fire regions of the world defined by the GFED database, the linear relationship between fire radiative power and fire patch size saturates for a threshold of intermediate-intensity fires. The value of this threshold differs from one region to another and depends on vegetation type. In the most fire-prone savanna regions, once this threshold is reached, fire size decreases for the most intense fires, which mostly happen in the late fire season. According to the percolation theory, we suggest that the decrease in fire size for more intense late season fires is a consequence of the increasing fragmentation of fuel continuity throughout the fire season and suggest that landscape-scale feedbacks should be developed in global fire modules.


2013 ◽  
Vol 22 (7) ◽  
pp. 910 ◽  
Author(s):  
Heather Heward ◽  
Alistair M. S. Smith ◽  
David P. Roy ◽  
Wade T. Tinkham ◽  
Chad M. Hoffman ◽  
...  

Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire intensity with severity, the nature of any relationship has not been examined over extended spatial scales. We compare fire intensities defined by Moderate Resolution Imaging Spectroradiometer Fire Radiative Power (MODIS FRP) products with Landsat-derived spectral burn severity indices for 16 fires across a vegetation structure continuum in the western United States. Per-pixel comparison of MODIS FRP data within individual fires with burn severity indices is not reliable because of known satellite temporal and spatial FRP undersampling. Across the fires, 69% of the variation in relative differenced normalized burn ratio was explained by the 90th percentile of MODIS FRP. Therefore, distributional MODIS FRP measures (median and 90th-percentile FRP) derived from multiple MODIS overpasses of the actively burning fire event may be used to predict potential long-term negative ecological effects for individual fires.


2010 ◽  
Vol 10 (4) ◽  
pp. 1491-1510 ◽  
Author(s):  
M. Val Martin ◽  
J. A. Logan ◽  
R. A. Kahn ◽  
F.-Y. Leung ◽  
D. L. Nelson ◽  
...  

Abstract. We analyze an extensive record of aerosol smoke plume heights derived from observations over North America for the fire seasons of 2002 and 2004–2007 made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time). The largest plumes are found over the boreal region (median values of ~850 m height, 24 km length and 940 m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ~530 m height, 12 km length and 550–640 m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620–1640 MW) than those remaining within the BL (174–465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 m thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June–July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire intensity and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion.


2005 ◽  
Vol 21 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Klaus Josef Hennenberg ◽  
Dethardt Goetze ◽  
Vanessa Minden ◽  
Dossahoua Traoré ◽  
Stefan Porembski

Along eight forest–savanna transects at seven semi-deciduous forest islands in the southern Comoé National Park data on spatial distribution of tree-size classes and environmental parameters (fuel load, shading by upper tree layers, and soil depth) were collected. For dominant tree species, a sequential series was observed from the forest border into the forest interior. At the forest border, Anogeissus leiocarpus was the most abundant tree with juveniles (<1 cm dbh) reaching highest density values (mean of 502 individuals ha−1) at the outer periphery of the forests. Regression analysis of juveniles of dominant tree species and environmental parameters resulted in a separation of forest and savanna species. Forest tree species regenerated well at forest sites, but also in the shade of A. leiocarpus stands. We conclude that (1) the studied forest islands advance against savanna by sequential succession, and (2) A. leiocarpus has a high potential to regenerate at savanna–forest boundaries under moderate fire impact and on rather shallow soils. The potential of A. leiocarpus to act as an important pioneer in the replacement of savanna by forest due to its effective regeneration at savanna sites and subsequent modification of site conditions, especially fire intensity by shading out savanna grasses, is discussed.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Michael R. Gallagher ◽  
Zachary Cope ◽  
Daniel Rosales Giron ◽  
Nicholas S. Skowronski ◽  
Trevor Raynor ◽  
...  

New physics-based fire behavior models are poised to revolutionize wildland fire planning and training; however, model testing against field conditions remains limited. We tested the ability of QUIC-Fire, a fast-running and computationally inexpensive physics-based fire behavior model to numerically reconstruct a large wildfire that burned in a fire-excluded area within the New York–Philadelphia metropolitan area in 2019. We then used QUIC-Fire as a tool to explore how alternate hypothetical management scenarios, such as prescribed burning, could have affected fire behavior. The results of our reconstruction provide a strong demonstration of how QUIC-Fire can be used to simulate actual wildfire scenarios with the integration of local weather and fuel information, as well as to efficiently explore how fire management can influence fire behavior in specific burn units. Our results illustrate how both reductions of fuel load and specific modification of fuel structure associated with frequent prescribed fire are critical to reducing fire intensity and size. We discuss how simulations such as this can be important in planning and training tools for wildland firefighters, and for avenues of future research and fuel monitoring that can accelerate the incorporation of models like QUIC-Fire into fire management strategies.


2009 ◽  
Vol 9 (5) ◽  
pp. 20515-20566 ◽  
Author(s):  
M. Val Martin ◽  
J. A. Logan ◽  
D. Kahn ◽  
F. Y. Leung ◽  
D. Nelson ◽  
...  

Abstract. We analyze a multi-year record of aerosol smoke plume heights derived from observations over North America made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on board the NASA Earth Observing System Terra satellite. We characterize the magnitude and variability of smoke plume heights for various biomes, and assess the contribution of local atmospheric and fire conditions to this variability. Plume heights are highly variable, ranging from a few hundred meters up to 5000 m above the terrain at the Terra overpass time (11:00–14:00 local time). The largest plumes are found over the boreal region (median values of ∼850 m height, 24 km length and 940 m thickness), whereas the smallest plumes are found over cropland and grassland fires in the contiguous US (median values of ∼530 m height, 12 km length and 550–640 m thickness). The analysis of plume heights in combination with assimilated meteorological observations from the NASA Goddard Earth Observing System indicates that a significant fraction (4–12%) of plumes from fires are injected above the boundary layer (BL), consistent with earlier results for Alaska and the Yukon Territories during summer 2004. Most of the plumes located above the BL (>83%) are trapped within stable atmospheric layers. We find a correlation between plume height and the MODerate resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies associated with each plume. Smoke plumes located in the free troposphere (FT) exhibit larger FRP values (1620–1640 MW) than those remaining within the BL (174–465 MW). Plumes located in the FT without a stable layer reach higher altitudes and are more spread-out vertically than those associated with distinct stable layers (2490 m height and 2790 m thickness versus 1880 m height and 1800 thickness). The MISR plume climatology exhibits a well-defined seasonal cycle of plume heights in boreal and temperate biomes, with greater heights during June–July. MODIS FRP measurements indicate that larger summertime heights are the result of higher fire intensity, likely due to more severe fire weather during these months. This work demonstrates the significant effect of fire radiative heat and atmospheric structure on the ultimate rise of fire emissions, and underlines the importance of considering such physical processes in modeling smoke dispersion.


Author(s):  
A. D. Chalfoun

Abstract Purpose of Review Anthropogenic activities can lead to the loss, fragmentation, and alteration of wildlife habitats. I reviewed the recent literature (2014–2019) focused on the responses of avian, mammalian, and herpetofaunal species to oil and natural gas development, a widespread and still-expanding land use worldwide. My primary goals were to identify any generalities in species’ responses to development and summarize remaining gaps in knowledge. To do so, I evaluated the directionality of a wide variety of responses in relation to taxon, location, development type, development metric, habitat type, and spatiotemporal aspects. Recent Findings Studies (n = 70) were restricted to the USA and Canada, and taxonomically biased towards birds and mammals. Longer studies, but not those incorporating multiple spatial scales, were more likely to detect significant responses. Negative responses of all types were present in relatively low frequencies across all taxa, locations, development types, and development metrics but were context-dependent. The directionality of responses by the same species often varied across studies or development metrics. Summary The state of knowledge about wildlife responses to oil and natural gas development has developed considerably, though many biases and gaps remain. Studies outside of North America and that focus on herpetofauna are lacking. Tests of mechanistic hypotheses for effects, long-term studies, assessment of response thresholds, and experimental designs that isolate the effects of different stimuli associated with development, remain critical. Moreover, tests of the efficacy of habitat mitigation efforts have been rare. Finally, investigations of the demographic effects of development across the full annual cycle were absent for non-game species and are critical for the estimation of population-level effects.


Sign in / Sign up

Export Citation Format

Share Document