scholarly journals Satellite Imagery-Based SERVES Soil Moisture for the Analysis of Soil Moisture Initialization Input Scale Effects on Physics-Based Distributed Watershed Hydrologic Modelling

2020 ◽  
Vol 12 (13) ◽  
pp. 2108
Author(s):  
Nawa Raj Pradhan ◽  
Ian Floyd ◽  
Stephen Brown

Data acquisition and an efficient processing method for hydrological model initialization, such as soil moisture and parameter value identification are critical for a physics-based distributed watershed modelling of flood and flood related disasters such as sediment and debris flow. Site measurements can provide accurate estimates of soil moisture, but such techniques are limited due to the number of physical sensors required to cover a large area effectively. Available satellite-based digital soil moisture data ranges from 9 km to 20 km in resolution which obscures the soil moisture details of a hill slope scale. This resolution limitation of available satellite-based distributed soil moisture data has impacted critical analysis of soil moisture resolution variance on physics-based distributed simulation results. Moreover, available satellite-based digital soil moisture data represents only a few centimeters of the top soil column and that would inform little about the effective root-zone wetness. A recently developed soil moisture estimation method called SERVES (Soil moisture Estimation of Root zone through Vegetation index-based Evapotranspiration fraction and Soil properties) overcomes this limitation of satellite-based soil moisture data by estimating distributed effective root zone soil moisture at 30 m resolution. In this study, a distributed watershed hydrological model of a sub-catchment of Reynolds Creek Experimental Watershed was developed with the GSSHA (Gridded Surface Sub-surface Hydrological Analysis) Model. SERVES soil moisture estimated at 30 m resolution was deployed in the watershed hydrological parameter value calibration and identification process. The 30 m resolution SERVES soil moisture data was resampled to 4500 m and 9000 m resolutions and was separately employed in the calibrated hydrological model to determine the soil moisture resolution effect on the model simulated outputs and the model parameter values. It was found that the simulated discharge is underestimated, infiltration rate/volume is overestimated and higher soil moisture state distribution is filtered out as the initial soil moisture resolution was coarsened. To compensate for this disparity in the simulated results, the soil saturated hydraulic conductivity value decreased with respect to the decreased resolutions.

2020 ◽  
Author(s):  
Nawa Raj Pradhan ◽  
Steven Brown ◽  
Ian Floyd

<p>Data acquisition and an efficient processing method for hydrological model initialization, such as soil moisture, and parameter value identification are critical for a physics based distributed watershed modelling of flood and flood related disasters such as sediment and debris flow. Site measurements can provide relatively accurate estimates of soil moisture, but such techniques are limited due to the need for a variety of measurement accessories, which are difficult to obtain to cover a large area sufficiently. Available satellite-based digital soil moisture data is at 9 kilometers to 50 kilometers in resolution which completely filters the soil moisture details at the hill slope scale. Moreover, available satellite-based digital soil moisture data represents only a few centimeters of the top soil column that informs nothing about the effective root-zone wetness. A recently developed soil moisture estimation method called SERVES (Soil moisture Estimation of Root zone through Vegetation index-based Evapotranspiration fraction and Soil properties) overcomes this limitation of satellite-based soil moisture data by estimating distributed root zone soil moisture at 30 meter resolution. In this study, a distributed watershed hydrological model of a sub-catchment of Reynolds Creek Experimental Watershed was developed with GSSHA (Gridded Surface Sub-surface Hydrological Analysis) Model. SERVES soil moisture estimated at 30 meter resolution was deployed in the watershed hydrological parameter value calibration and identification process. The 30 meter resolution SERVES soil moisture data was resampled to 4500 meter and 9000 meter resolutions and was separately employed in the calibrated hydrological model to determine the effect soil moisture resolution  has on the simulated outputs and the model parameters. It was found that the simulated discharge significantly decreased as the initial soil moisture resolution was coarsened. To compensate for this underestimated simulated discharge, the soil hydraulic conductivity value decreased logarithmically with respect to the decreased resolutions. This study will reduce parameter value identification uncertainty especially in flood and soil erosion modelling at multi scale watershed in a changing climate.</p>


2021 ◽  
Author(s):  
David Fairbairn ◽  
Patricia de Rosnay ◽  
Peter Weston

<p>Environmental (e.g. floods, droughts) and weather prediction systems rely on an accurate representation of soil moisture (SM). The EUMETSAT H SAF aims to provide high quality satellite-based hydrological products, including SM.<br>ECMWF is producing ASCAT root zone SM for H SAF. The production relies on an Extended Kalman filter to retrieve root zone SM from surface SM satellite data. A 10 km sampling reanalysis product (1992-2020) forced by ERA5 atmospheric fields (H141/H142) is produced for H SAF, which assimilates ERS/SCAT (1992-2006) and ASCAT-A/B/C (2007-2020) derived surface SM. The root-zone SM performance is validated using sparse in situ observations globally and generally demonstrates a positive and consistent correlation over the period. A negative trend in root-zone SM is found during summer and autumn months over much of Europe during the period (1992-2020). This is consistent with expected climate change impacts and is particularly alarming over the water-scarce Mediterranean region. The recent hot and dry summer of 2019 and dry spring of 2020 are well captured by negative root-zone SM anomalies. Plans for the future H SAF data record products will be presented, including the assimilation of high-resolution EPS-SCA-derived soil moisture data.</p>


2018 ◽  
Vol 242 ◽  
pp. 142-149 ◽  
Author(s):  
Ding-feng Cao ◽  
Bin Shi ◽  
Hong-hu Zhu ◽  
Hilary I. Inyang ◽  
Guang-qing Wei ◽  
...  

2021 ◽  
Author(s):  
Manolis G. Grillakis

<p>Remote sensing has proven to be an irreplaceable tool for monitoring soil moisture. The European Space Agency (ESA), through the Climate Change Initiative (CCI), has provided one of the most substantial contributions in the soil water monitoring, with almost 4 decades of global satellite derived and homogenized soil moisture data for the uppermost soil layer. Yet, due to the inherent limitations of many of the remote sensors, only a limited soil depth can be monitored. To enable the assessment of the deeper soil layer moisture from surface remotely sensed products, the Soil Water Index (SWI) has been established as a convolutive transformation of the surface soil moisture estimation, under the assumption of uniform hydraulic conductivity and the absence of transpiration. The SWI uses a single calibration parameter, the T-value, to modify its response over time.</p><p>Here the Soil Water Index (SWI) is calibrated using ESA CCI soil moisture against in situ observations from the International Soil Moisture Network and then use Artificial Neural Networks (ANNs) to find the best physical soil, climate, and vegetation descriptors at a global scale to regionalize the calibration of the T-value. The calibration is then used to assess a root zone related soil moisture for the period 2001 – 2018.</p><p>The results are compared against the European Centre for Medium-Range Weather Forecasts, ERA5 Land reanalysis soil moisture dataset, showing a good agreement, mainly over mid-latitudes. The results indicate that there is added value to the results of the machine learning calibration, comparing to the uniform T-value. This work contributes to the exploitation of ESA CCI soil moisture data, while the produced data can support large scale soil moisture related studies.</p>


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 594 ◽  
Author(s):  
Majid Fereidoon ◽  
Manfred Koch ◽  
Luca Brocca

Hydrological models are widely used for many purposes in water sector projects, including streamflow prediction and flood risk assessment. Among the input data used in such hydrological models, the spatial-temporal variability of rainfall datasets has a significant role on the final discharge estimation. Therefore, accurate measurements of rainfall are vital. On the other hand, ground-based measurement networks, mainly in developing countries, are either nonexistent or too sparse to capture rainfall accurately. In addition to in-situ rainfall datasets, satellite-derived rainfall products are currently available globally with high spatial and temporal resolution. An innovative approach called SM2RAIN that estimates rainfall from soil moisture data has been applied successfully to various regions. In this study, first, soil moisture content derived from the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E) is used as input into the SM2RAIN algorithm to estimate daily rainfall (SM2R-AMSRE) at different sites in the Karkheh river basin (KRB), southwest Iran. Second, the SWAT (Soil and Water Assessment Tool) hydrological model was applied to simulate runoff using both ground-based observed rainfall and SM2R-AMSRE rainfall as input. The results reveal that the SM2R-AMSRE rainfall data are, in most cases, in good agreement with ground-based rainfall, with correlations R ranging between 0.58 and 0.88, though there is some underestimation of the observed rainfall due to soil moisture saturation not accounted for in the SM2RAIN equation. The subsequent SWAT-simulated monthly runoff from SM2R-AMSRE rainfall data (SWAT-SM2R-AMSRE) reproduces the observations at the six gauging stations (with coefficient of determination, R² > 0.71 and NSE > 0.56), though with slightly worse performances in terms of bias (Bias) and root-mean-square error (RMSE) and, again, some systematic flow underestimation compared to the SWAT model with ground-based rainfall input. Additionally, rainfall estimates of two satellite products of the Tropical Rainfall Measuring Mission (TRMM), 3B42 and 3B42RT, are used in the calibrated SWAT- model after bias correction. The monthly runoff predictions obtained with 3B42- rainfall have 0.42 < R2 < 0.72 and−0.06 < NSE < 0.74 which are slightly better than those obtained with 3B42RT- rainfall, but not as good as the SWAT-SM2R-AMSRE. Therefore, despite the aforementioned limitations, using SM2R-AMSRE rainfall data in a hydrological model like SWAT appears to be a viable approach in basins with limited ground-based rainfall data.


2019 ◽  
Vol 47 (8) ◽  
pp. 1357-1374 ◽  
Author(s):  
Soumya S. Behera ◽  
Bhaskar Ramchandra Nikam ◽  
Mukund S. Babel ◽  
Vaibhav Garg ◽  
Shiv Prasad Aggarwal

Sign in / Sign up

Export Citation Format

Share Document