scholarly journals Statistical Characteristics of Cloud Occurrence and Vertical Structure Observed by a Ground-Based Ka-Band Cloud Radar in South Korea

2020 ◽  
Vol 12 (14) ◽  
pp. 2242
Author(s):  
Bo-Young Ye ◽  
Eunsil Jung ◽  
Seungsook Shin ◽  
GyuWon Lee

The cloud measurements for two years from the vertical pointing Ka-band cloud radar at Boseong in Korea are used to analyze detailed cloud properties. The reflectivity of the cloud radar is calibrated with other vertical pointing radars compared with the two disdrometers. A simple threshold-based quality control method is applied to eliminate non-meteorological echoes (insects and noise) in conjunction with despeckling along the radial direction. Clouds are classified into five types: high (HC), middle (MC), low (LC) for non-precipitating clouds, and deep (RainDP) and shallow (RainSH) for precipitating clouds. The average cloud frequency was about 35.9% with the maximum frequency of 50% in June for the total two-year sampling period. The RainDP occurred most frequently (11.8%), followed by HC (9.3%), MC (7.4%), RainSH (4.4%), and LC (2.9%) out of the average occurrence of the total 35.9%. HC and RainDP were frequently observed in summer and autumn, while RainSH, LC, and MC were dominant in the winter due to the dominant cloud development by the air-sea interaction during the cold air outbreak. The HC showed a significant seasonal variation of the maximum height and the rapid growth in the layer above 7 km (about −15 °C) in summer and autumn. This rapid growth appears in HC, MC, LC, and RainDP and is linked with rapid increases in Doppler velocity and mass flux. Thus, this growth is originated from the dominant riming processes in addition to depositional growth and is supported by an updraft in the layer between 6 and 8 km. MC showed a single frequency peak around 6 km with rapid growth above and strong evaporation below. The Doppler velocity of MC rapidly increases above 8 km and is nearly constant below this height due to strong evaporation except in the summer. LC had a similar trend of reflectivity (rapid growth in the HC region and strong evaporation in the lower region) lacking high frequency in the MC region. Unlike LC, the RainDP had continuous growth toward the ground in the entire layer with rapid growth in the HC and MC regions. In addition, two modes (cloud and precipitation) appear on the ground in spring and fall with the vertical continuity of the high frequency in the precipitation mode. The precipitation growth was most efficient in RainSH in summer with a reflectivity gradient of about 20 dBZ km−1 and frequent updrafts larger than 1 m s−1 and was smaller in the MC and HC regions.

2014 ◽  
Vol 53 (11) ◽  
pp. 2503-2523 ◽  
Author(s):  
Min Deng ◽  
Pavlos Kollias ◽  
Zhe Feng ◽  
Chidong Zhang ◽  
Charles N. Long ◽  
...  

AbstractIn this study, methods of convective/stratiform precipitation classification and surface rain-rate estimation based on the Atmospheric Radiation Measurement Program (ARM) cloud radar measurements were developed and evaluated. Simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two scanning precipitation radars [NCAR S-band/Ka-band Dual Polarization, Dual Wavelength Doppler Radar (S-PolKa) and Texas A&M University Shared Mobile Atmospheric Research and Teaching Radar (SMART-R)], and surface precipitation during the Dynamics of the Madden–Julian Oscillation/ARM MJO Investigation Experiment (DYNAMO/AMIE) field campaign were used. The motivation of this study is to apply the unique long-term ARM cloud radar observations without accompanying precipitation radars to the study of cloud life cycle and precipitation features under different weather and climate regimes. The resulting convective/stratiform classification from KAZR was evaluated against precipitation radars. Precipitation occurrence and classified convective/stratiform rain fractions from KAZR compared favorably to the collocated SMART-R and S-PolKa observations. Both KAZR and S-PolKa radars observed about 5% precipitation occurrence. The convective (stratiform) precipitation fraction is about 18% (82%). Collocated disdrometer observations of two days showed an increased number concentration of small and large raindrops in convective rain relative to dominant small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also showed distinct structures for convective and stratiform rain. These evidences indicate that the method produces physically consistent results for the two types of rain. A new KAZR-based, two-parameter [the gradient of accumulative radar reflectivity Ze (GAZ) below 1 km and near-surface Ze] rain-rate estimation procedure was developed for both convective and stratiform rain. This estimate was compared with the exponential Z–R (reflectivity–rain rate) relation. The relative difference between the estimated and surface-measured rainfall rates showed that the two-parameter relation can improve rainfall estimation relative to the Z–R relation.


2019 ◽  
Vol 85 (1(I)) ◽  
pp. 64-71 ◽  
Author(s):  
M. M. Gadenin

The cycle configuration at two-frequency loading regimes depends on the number of parameters including the absolute values of the frequencies and amplitudes of the low-frequency and high-frequency loads added during this mode, the ratio of their frequencies and amplitudes, as well as the phase shift between these harmonic components, the latter having a significant effect only with a small ratio of frequencies. Presence of such two-frequency regimes or service loading conditions for parts of machines and structures schematized by them can significantly reduce their endurance. Using the results of experimental studies of changes in the endurance of a two-frequency loading of specimens of cyclically stable, cyclically softened and cyclically hardened steels under rigid conditions we have shown that decrease in the endurance under the aforementioned conditions depends on the ratio of frequencies and amplitudes of operation low-frequency low-cycle and high-frequency vibration stresses, and, moreover, the higher the level of the ratios of amplitudes and frequencies of those stacked harmonic processes of loading the greater the effect. It is shown that estimation of such a decrease in the endurance compared to a single frequency loading equal in the total stress (strains) amplitudes can be carried out using an exponential expression coupling those endurances through a parameter (reduction factor) containing the ratio of frequencies and amplitudes of operation cyclic loads and characteristic of the material. The reduction is illustrated by a set of calculation-experimental curves on the corresponding diagrams for each of the considered types of materials and compared with the experimental data.


Author(s):  
A. Agarwal ◽  
J. S. Pillai ◽  
K. Aurobindo ◽  
J. D. Abhyankar ◽  
G. Isola ◽  
...  
Keyword(s):  
Ka Band ◽  

2011 ◽  
Vol 50 (7) ◽  
pp. 1543-1557 ◽  
Author(s):  
Mircea Grecu ◽  
Lin Tian ◽  
William S. Olson ◽  
Simone Tanelli

AbstractIn this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz, or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount importance in deriving radar-based and combined radar–radiometer precipitation estimates from observations provided by the forthcoming NASA Global Precipitation Measurement (GPM) mission. In GPM, dual-frequency Ku-/Ka-band radar observations will be available only within a narrow swath (approximately one-half of the width of the Ku-band radar swath) over the earth’s surface. Therefore, a particular challenge is to develop a flexible radar retrieval algorithm that can be used to derive physically consistent precipitation profile estimates across the radar swath irrespective of the availability of Ka-band radar observations at any specific location inside that swath, in other words, an algorithm capable of exploiting the information provided by dual-frequency measurements but robust in the absence of Ka-band channel. In the present study, a unified, robust precipitation retrieval algorithm able to interpret either Ku-only or dual-frequency Ku-/Ka-band radar observations in a manner consistent with the information content of the observations is formulated. The formulation is based on 1) a generalized Hitschfeld–Bordan attenuation correction method that yields generic Ku-only precipitation profile estimates and 2) an optimization procedure that adjusts the Ku-band estimates to be physically consistent with coincident Ka-band reflectivity observations and surface reference technique–based path-integrated attenuation estimates at both Ku and Ka bands. The algorithm is investigated using synthetic and actual airborne radar observations collected in the NASA Tropical Composition, Cloud, and Climate Coupling (TC4) campaign. In the synthetic data investigation, the dual-frequency algorithm performed significantly better than a single-frequency algorithm; dual-frequency estimates, however, are still sensitive to various assumptions such as the particle size distribution shape, vertical and cloud water distributions, and scattering properties of the ice-phase precipitation.


2015 ◽  
Vol 123 (4) ◽  
pp. 799-809 ◽  
Author(s):  
Robert Sütterlin ◽  
Antonella LoMauro ◽  
Stefano Gandolfi ◽  
Rita Priori ◽  
Andrea Aliverti ◽  
...  

Abstract Background: Both superimposed high-frequency jet ventilation (SHFJV) and single-frequency (high-frequency) jet ventilation (HFJV) have been used with success for airway surgery, but SHFJV has been found to provide higher lung volumes and better gas exchange than HFJV in unobstructed airways. The authors systematically compared the ventilation efficacy of SHFJV and HFJV at different ventilation frequencies in a model of tracheal obstruction and describe the frequency and obstruction dependence of SHFJV efficacy. Methods: Ten anesthetized animals (weight 25 to 31.5 kg) were alternately ventilated with SHFJV and HFJV at a set of different fHF from 50 to 600 min−1. Obstruction was created by insertion of interchangeable stents with ID 2 to 8 mm into the trachea. Chest wall volume was measured using optoelectronic plethysmography, airway pressures were recorded, and blood gases were analyzed repeatedly. Results: SHFJV provided greater than 1.6 times higher end-expiratory chest wall volume than HFJV, and tidal volume (VT) was always greater than 200 ml with SHFJV. Increase of fHF from 50 to 600 min−1 during HFJV resulted in a more than 30-fold VT decrease from 112 ml (97 to 130 ml) to negligible values and resulted in severe hypoxia and hypercapnia. During SHFJV, stent ID reduction from 8 to 2 mm increased end-expiratory chest wall volume by up to 3 times from approximately 100 to 300 ml and decreased VT by up to 4.2 times from approximately 470 to 110 ml. Oxygenation and ventilation were acceptable for 4 mm ID or more, but hypercapnia occurred with the 2 mm stent. Conclusion: In this in vivo porcine model of variable severe tracheal stenosis, SHFJV effectively increased lung volumes and maintained gas exchange and may be advantageous in severe airway obstruction.


2021 ◽  
Author(s):  
Christopher R. Williams ◽  
Karen L. Johnson ◽  
Scott E. Giangrande ◽  
Joseph C. Hardin ◽  
Ruşen Öktem ◽  
...  

Abstract. This study presents a method to identify and distinguish insects, clouds, and precipitation in 35 GHz (Ka-band) vertically pointing polarimetric radar Doppler velocity power spectra and then produce masks indicating the occurrence of hydrometeors (i.e., clouds or precipitation) and insects at each range gate. The polarimetric radar used in this study transmits a linear polarized wave and receives signals in collinear (CoPol) and cross-linear (XPol) polarized channels. The insect-hydrometeor discrimination method uses CoPol and XPol spectral information in two separate algorithms with their spectral results merged and then filtered into single value products at each range gate. The first algorithm discriminates between insects and clouds in the CoPol Doppler velocity power spectra based on the spectra texture, or spectra roughness, which varies due to the scattering characteristics of insects versus cloud particles. The second algorithm distinguishes insects from raindrops and ice particles by exploiting the larger Doppler velocity spectra linear depolarization ratio (LDR) produced by asymmetric insects. Since XPol power return is always less than CoPol power return for the same target (i.e., insect or hydrometeor), fewer insects and hydrometeors are detected in the LDR algorithm than the CoPol algorithm, which drives this need for a CoPol based algorithm. After performing both CoPol and LDR detection algorithms, regions of insect and hydrometeor scattering from both algorithms are combined in the Doppler velocity spectra domain and then filtered to produce a binary hydrometeor mask indicating the occurrence of cloud, raindrops, or ice particles at each range gate. Comparison with a collocated ceilometer indicates that hydrometeor mask column bottoms are within +/-100 meters of simultaneous ceilometer cloud base heights. Forty-seven (47) summer-time days were processed with the insect-hydrometeor discrimination method using U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program Ka-band zenith pointing radar observations in northern Oklahoma (USA). All datasets and images are available on public repositories.


2015 ◽  
Vol 32 (12) ◽  
pp. 2281-2296 ◽  
Author(s):  
Robert Meneghini ◽  
Hyokyung Kim ◽  
Liang Liao ◽  
Jeffrey A. Jones ◽  
John M. Kwiatkowski

AbstractIt has long been recognized that path-integrated attenuation (PIA) can be used to improve precipitation estimates from high-frequency weather radar data. One approach that provides an estimate of this quantity from airborne or spaceborne radar data is the surface reference technique (SRT), which uses measurements of the surface cross section in the presence and absence of precipitation. Measurements from the dual-frequency precipitation radar (DPR) on the Global Precipitation Measurement (GPM) satellite afford the first opportunity to test the method for spaceborne radar data at Ka band as well as for the Ku-band–Ka-band combination.The study begins by reviewing the basis of the single- and dual-frequency SRT. As the performance of the method is closely tied to the behavior of the normalized radar cross section (NRCS or σ0) of the surface, the statistics of σ0 derived from DPR measurements are given as a function of incidence angle and frequency for ocean and land backgrounds over a 1-month period. Several independent estimates of the PIA, formed by means of different surface reference datasets, can be used to test the consistency of the method since, in the absence of error, the estimates should be identical. Along with theoretical considerations, the comparisons provide an initial assessment of the performance of the single- and dual-frequency SRT for the DPR. The study finds that the dual-frequency SRT can provide improvement in the accuracy of path attenuation estimates relative to the single-frequency method, particularly at Ku band.


2014 ◽  
Vol 631-632 ◽  
pp. 383-386
Author(s):  
Jiao Jiao Fan ◽  
Jian Li ◽  
Dan Song ◽  
Li Wu ◽  
Shu Sheng Peng

A new ka-band circularly-polarized antenna is presented in this paper, in which a linearly-polarized wave is conversed into a circularly-polarized wave with a circular waveguide polarizer. After simulation and optimization with HFSS (High Frequency Structure Simulator), a compact circularly-polarized antenna is designed with a total height less than 25mm. More simple and easier structure is adopted to achieve a low-profile circularly-polarized antenna.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000082-000087
Author(s):  
Tobias Klein ◽  
Carsten Günner ◽  
Reinhard Kulke

The complexity of today's satellite systems is ever-growing and system weight and size of the subcomponents are becoming even more critical as the number of channels increases. A possible solution for achieving small systems, while maintaining reliability, is the use of the LTCC process. The so-called Keramis technology is a modular concept, where a number of small, hermetically sealed LTCC modules are connected on a carrier substrate. For these systems, the interconnect technology that connects the different LTCCs is of high importance. This paper presents a novel BGA interconnect for high frequency operation up to 40 GHz.


2018 ◽  
Vol 10 (11) ◽  
pp. 1674 ◽  
Author(s):  
Zbyněk Sokol ◽  
Jana Minářová ◽  
Petr Novák

In radar meteorology, greater interest is dedicated to weather radars and precipitation analyses. However, cloud radars provide us with detailed information on cloud particles from which the precipitation consists of. Motivated by research on the cloud particles, a vertical Ka-band cloud radar (35 GHz) was installed at the Milešovka observatory in Central Europe and was operationally measuring since June 2018. This study presents algorithms that we use to retrieve vertical air velocity (Vair) and hydrometeors. The algorithm calculating Vair is based on small-particle tracers, which considers the terminal velocity of small particles negligible and, thereby, Vair corresponds to the velocity of the small particles. The algorithm classifying hydrometeors consists of calculating the terminal velocity of hydrometeors and the vertical temperature profile. It identifies six hydrometeor types (cloud droplets, ice, and four precipitating particles: rain, graupel, snow, and hail) based on the calculated terminal velocity of hydrometeors, temperature, Vair, and Linear Depolarization Ratio. The results of both the Vair and the distribution of hydrometeors were found to be realistic for a thunderstorm associated with significant lightning activity on 1 June 2018.


Sign in / Sign up

Export Citation Format

Share Document