scholarly journals Automated Method for Delineating Harvested Stands Based on Harvester Location Data

2020 ◽  
Vol 12 (17) ◽  
pp. 2754
Author(s):  
Timo Melkas ◽  
Kirsi Riekki ◽  
Juha-Antti Sorsa

The data produced by cut-to-length harvesters provide new large-scale data source for event-based update of national forest stand inventory by Finnish Forest Centre. This study aimed to automate geoprocessing, which generates delineations of operated areas from harvester location data. Automated algorithms were developed and tested with a dataset of 455 harvested objects, recorded during harvestings. In automated stand delineation, the location points are clustered, the stand points are identified and external strip roads are separated. Then, stand polygons are produced. To validate the results, automatic delineations were compared to 57 observed delineations from field measurements and aerial images. A detailed comparison method was developed to study the correspondence. Stand polygonization parameter was adjusted and areal correspondence with 1% error on average was obtained for stands over 0.75 ha. Good stand shape agreement was observed. Overall, the automated method worked well, and the operative stand delineations were found suitable for updating the forest inventory data. To modify the operative stands towards forest inventory stands, a balancing algorithm is introduced to create a solid, unique stand boundary between overlapping stands. This algorithm is beneficial for upkeep of stand networks. In addition, the Global Navigation Satellite System (GNSS) accuracy of the harvesters was examined and estimated numerically.

Author(s):  
A. V. Ponomarev

Introduction: Large-scale human-computer systems involving people of various skills and motivation into the information processing process are currently used in a wide spectrum of applications. An acute problem in such systems is assessing the expected quality of each contributor; for example, in order to penalize incompetent or inaccurate ones and to promote diligent ones.Purpose: To develop a method of assessing the expected contributor’s quality in community tagging systems. This method should only use generally unreliable and incomplete information provided by contributors (with ground truth tags unknown).Results:A mathematical model is proposed for community image tagging (including the model of a contributor), along with a method of assessing the expected contributor’s quality. The method is based on comparing tag sets provided by different contributors for the same images, being a modification of pairwise comparison method with preference relation replaced by a special domination characteristic. Expected contributors’ quality is evaluated as a positive eigenvector of a pairwise domination characteristic matrix. Community tagging simulation has confirmed that the proposed method allows you to adequately estimate the expected quality of community tagging system contributors (provided that the contributors' behavior fits the proposed model).Practical relevance: The obtained results can be used in the development of systems based on coordinated efforts of community (primarily, community tagging systems). 


2012 ◽  
Vol 37 (4) ◽  
pp. 168-171 ◽  
Author(s):  
Birutė Ruzgienė ◽  
Qian Yi Xiang ◽  
Silvija Gečytė

The rectification of high resolution digital aerial images or satellite imagery employed for large scale city mapping is modern technology that needs well distributed and accurately defined control points. Digital satellite imagery, obtained using widely known software Google Earth, can be applied for accurate city map construction. The method of five control points is suggested for imagery rectification introducing the algorithm offered by Prof. Ruan Wei (tong ji University, Shanghai). Image rectification software created on the basis of the above suggested algorithm can correct image deformation with required accuracy, is reliable and keeps advantages in flexibility. Experimental research on testing the applied technology has been executed using GeoEye imagery with Google Earth builder over the city of Vilnius. Orthophoto maps at the scales of 1:1000 and 1:500 are generated referring to the methodology of five control points. Reference data and rectification results are checked comparing with those received from processing digital aerial images using a digital photogrammetry approach. The image rectification process applying the investigated method takes a short period of time (about 4-5 minutes) and uses only five control points. The accuracy of the created models satisfies requirements for large scale mapping. Santrauka Didelės skiriamosios gebos skaitmeninių nuotraukų ir kosminių nuotraukų rektifikavimas miestams kartografuoti stambiuoju masteliu yra nauja technologija. Tai atliekant būtini tikslūs ir aiškiai matomi kontroliniai taškai. Skaitmeninės kosminės nuotraukos, gautos taikant plačiai žinomą programinį paketą Google Earth, gali būti naudojamos miestams kartografuoti dideliu tikslumu. Siūloma nuotraukas rektifikuoti Penkių kontrolinių taskų metodu pagal prof. Ruan Wei (Tong Ji universitetas, Šanchajus) algoritmą. Moksliniam eksperimentui pasirinkta Vilniaus GeoEye nuotrauka iš Google Earth. 1:1000 ir 1:500 mastelio ortofotografiniai žemėlapiai sudaromi Penkių kontrolinių taškų metodu. Rektifikavimo duomenys lyginami su skaitmeninių nuotraukų apdorojimo rezultatais, gautais skaitmeninės fotogrametrijos metodu. Nuotraukų rektifikavimas Penkių kontrolinių taskų metodu atitinka kartografavimo stambiuoju masteliu reikalavimus, sumažėja laiko sąnaudos. Резюме Ректификация цифровых и космических снимков высокой резолюции для крупномасштабного картографирования является новой технологией, требующей точных и четких контрольных точек. Цифровые космические снимки, полученные с использованием широкоизвестного программного пакета Google Earth, могут применяться для точного картографирования городов. Для ректификации снимков предложен метод пяти контрольных точек с применением алгоритма проф. Ruan Wei (Университет Tong Ji, Шанхай). Для научного эксперимента использован снимок города Вильнюса GeoEye из Google Earth. Ортофотографические карты в масштабе 1:1000 и 1:500 генерируются с применением метода пяти контрольных точек. Полученные результаты и данные ректификации сравниваются с результатами цифровых снимков, полученных с применением метода цифровой фотограмметрии. Ректификация снимков с применением метода пяти контрольных точек уменьшает временные расходы и удовлетворяет требования, предъявляемые к крупномасштабному картографированию.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 782
Author(s):  
Shuo Cao ◽  
Honglei Qin ◽  
Li Cong ◽  
Yingtao Huang

Position information is very important tactical information in large-scale joint military operations. Positioning with datalink time of arrival (TOA) measurements is a primary choice when a global navigation satellite system (GNSS) is not available, datalink members are randomly distributed, only estimates with measurements between navigation sources and positioning users may lead to a unsatisfactory accuracy, and positioning geometry of altitude is poor. A time division multiple address (TDMA) datalink cooperative navigation algorithm based on INS/JTIDS/BA is presented in this paper. The proposed algorithm is used to revise the errors of the inertial navigation system (INS), clock bias is calibrated via round-trip timing (RTT), and altitude is located with height filter. The TDMA datalink cooperative navigation algorithm estimate errors are stated with general navigation measurements, cooperative navigation measurements, and predicted states. Weighted horizontal geometric dilution of precision (WHDOP) of the proposed algorithm and the effect of the cooperative measurements on positioning accuracy is analyzed in theory. We simulate a joint tactical information distribution system (JTIDS) network with multiple members to evaluate the performance of the proposed algorithm. The simulation results show that compared to an extended Kalman filter (EKF) that processes TOA measurements sequentially and a TDMA datalink navigation algorithm without cooperative measurements, the TDMA datalink cooperative navigation algorithm performs better.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2503
Author(s):  
Taro Suzuki ◽  
Yoshiharu Amano

This paper proposes a method for detecting non-line-of-sight (NLOS) multipath, which causes large positioning errors in a global navigation satellite system (GNSS). We use GNSS signal correlation output, which is the most primitive GNSS signal processing output, to detect NLOS multipath based on machine learning. The shape of the multi-correlator outputs is distorted due to the NLOS multipath. The features of the shape of the multi-correlator are used to discriminate the NLOS multipath. We implement two supervised learning methods, a support vector machine (SVM) and a neural network (NN), and compare their performance. In addition, we also propose an automated method of collecting training data for LOS and NLOS signals of machine learning. The evaluation of the proposed NLOS detection method in an urban environment confirmed that NN was better than SVM, and 97.7% of NLOS signals were correctly discriminated.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2021 ◽  
Vol 13 (16) ◽  
pp. 3062
Author(s):  
Guo Zhang ◽  
Boyang Jiang ◽  
Taoyang Wang ◽  
Yuanxin Ye ◽  
Xin Li

To ensure the accuracy of large-scale optical stereo image bundle block adjustment, it is necessary to provide well-distributed ground control points (GCPs) with high accuracy. However, it is difficult to acquire control points through field measurements outside the country. Considering the high planimetric accuracy of spaceborne synthetic aperture radar (SAR) images and the high elevation accuracy of satellite-based laser altimetry data, this paper proposes an adjustment method that combines both as control sources, which can be independent from GCPs. Firstly, the SAR digital orthophoto map (DOM)-based planar control points (PCPs) acquisition is realized by multimodal matching, then the laser altimetry data are filtered to obtain laser altimetry points (LAPs), and finally the optical stereo images’ combined adjustment is conducted. The experimental results of Ziyuan-3 (ZY-3) images prove that this method can achieve an accuracy of 7 m in plane and 3 m in elevation after adjustment without relying on GCPs, which lays the technical foundation for a global-scale satellite image process.


2021 ◽  
Vol 13 (5) ◽  
pp. 1010
Author(s):  
Lehui Wei ◽  
Chunhua Jiang ◽  
Yaogai Hu ◽  
Ercha Aa ◽  
Wengeng Huang ◽  
...  

This study presents observations of nighttime spread F/ionospheric irregularities and spread Es at low and middle latitudes in the South East Asia longitude of China sectors during the recovery phase of the 7–9 September 2017 geomagnetic storm. In this study, multiple observations, including a chain of three ionosondes located about the longitude of 100°E, Swarm satellites, and Global Navigation Satellite System (GNSS) ROTI maps, were used to study the development process and evolution characteristics of the nighttime spread F/ionospheric irregularities at low and middle latitudes. Interestingly, spread F and intense spread Es were simultaneously observed by three ionosondes during the recovery phase. Moreover, associated ionospheric irregularities could be observed by Swarm satellites and ground-based GNSS ionospheric TEC. Nighttime spread F and spread Es at low and middle latitudes might be due to multiple off-vertical reflection echoes from the large-scale tilts in the bottom ionosphere. In addition, we found that the periods of the disturbance ionosphere are ~1 h at ZHY station, ~1.5 h at LSH station and ~1 h at PUR station, respectively. It suggested that the large-scale tilts in the bottom ionosphere might be produced by LSTIDs (Large scale Traveling Ionospheric Disturbances), which might be induced by the high-latitude energy inputs during the recovery phase of this storm. Furthermore, the associated ionospheric irregularities observed by satellites and ground-based GNSS receivers might be caused by the local electric field induced by LSTIDs.


2021 ◽  
Vol 13 (13) ◽  
pp. 2473
Author(s):  
Qinglie Yuan ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Aidi Hizami Alias ◽  
Shaiful Jahari Hashim

Automatic building extraction has been applied in many domains. It is also a challenging problem because of the complex scenes and multiscale. Deep learning algorithms, especially fully convolutional neural networks (FCNs), have shown robust feature extraction ability than traditional remote sensing data processing methods. However, hierarchical features from encoders with a fixed receptive field perform weak ability to obtain global semantic information. Local features in multiscale subregions cannot construct contextual interdependence and correlation, especially for large-scale building areas, which probably causes fragmentary extraction results due to intra-class feature variability. In addition, low-level features have accurate and fine-grained spatial information for tiny building structures but lack refinement and selection, and the semantic gap of across-level features is not conducive to feature fusion. To address the above problems, this paper proposes an FCN framework based on the residual network and provides the training pattern for multi-modal data combining the advantage of high-resolution aerial images and LiDAR data for building extraction. Two novel modules have been proposed for the optimization and integration of multiscale and across-level features. In particular, a multiscale context optimization module is designed to adaptively generate the feature representations for different subregions and effectively aggregate global context. A semantic guided spatial attention mechanism is introduced to refine shallow features and alleviate the semantic gap. Finally, hierarchical features are fused via the feature pyramid network. Compared with other state-of-the-art methods, experimental results demonstrate superior performance with 93.19 IoU, 97.56 OA on WHU datasets and 94.72 IoU, 97.84 OA on the Boston dataset, which shows that the proposed network can improve accuracy and achieve better performance for building extraction.


2017 ◽  
Vol 814 ◽  
pp. 592-613 ◽  
Author(s):  
Andras Nemes ◽  
Teja Dasari ◽  
Jiarong Hong ◽  
Michele Guala ◽  
Filippo Coletti

We report on optical field measurements of snow settling in atmospheric turbulence at $Re_{\unicode[STIX]{x1D706}}=940$. It is found that the snowflakes exhibit hallmark features of inertial particles in turbulence. The snow motion is analysed in both Eulerian and Lagrangian frameworks by large-scale particle imaging, while sonic anemometry is used to characterize the flow field. Additionally, the snowflake size and morphology are assessed by digital in-line holography. The low volume fraction and mass loading imply a one-way interaction with the turbulent air. Acceleration probability density functions show wide exponential tails consistent with laboratory and numerical studies of homogeneous isotropic turbulence. Invoking the assumption that the particle acceleration has a stronger dependence on the Stokes number than on the specific features of the turbulence (e.g. precise Reynolds number and large-scale anisotropy), we make inferences on the snowflakes’ aerodynamic response time. In particular, we observe that their acceleration distribution is consistent with that of particles of Stokes number in the range $St=0.1{-}0.4$ based on the Kolmogorov time scale. The still-air terminal velocities estimated for the resulting range of aerodynamic response times are significantly smaller than the measured snow particle fall speed. This is interpreted as a manifestation of settling enhancement by turbulence, which is observed here for the first time in a natural setting.


Sign in / Sign up

Export Citation Format

Share Document