scholarly journals Automated Mapping for Long-Term Analysis of Shifting Cultivation in Northeast India

2021 ◽  
Vol 13 (6) ◽  
pp. 1066
Author(s):  
Pulakesh Das ◽  
Sujoy Mudi ◽  
Mukunda D. Behera ◽  
Saroj K. Barik ◽  
Deepak R. Mishra ◽  
...  

Assessment of the spatio-temporal dynamics of shifting cultivation is important to understand the opportunities for land restoration. The past studies on shifting cultivation mapping of North-East (NE) India lack systematic assessment techniques. We have developed a decision tree-based multi-step threshold (DTMT) method for consistent and long-term mapping of shifting cultivation using Landsat data from 1975 to 2018. Widely used vegetation indices such as normalized difference vegetation index (NDVI), Normalized Burn Ratio (NBR) and its relative difference NBR (RdNBR) were integrated with the suitable thresholds in the classification, which yielded overall accuracy above 85%. A significant decrease in total shifting cultivation area was observed with an overall reduction of 75% from 1975–1976 to 2017–2018. The methodology presented in this study is reproducible with minimal inputs and can be useful to map similar changes by optimizing the index threshold values to accommodate relative differences for other landscapes. Furthermore, the crop-suitability maps generated by incorporating climate and soil factors prioritizes suitable land use of shifting cultivation plots. The Google Earth Engine (GEE) platform was employed for automatic mapping of the shifting cultivation areas at desired time intervals for facilitating seamless dissemination of the map products. Besides the novel DTMT method, the shifting cultivation and crop-suitability maps generated in this study, can aid in sustainable land management.

2009 ◽  
Vol 62 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Carlos M. Di Bella ◽  
Ignacio J. Negri ◽  
Gabriela Posse ◽  
Florencia R. Jaimes ◽  
Esteban G. Jobbágy ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1264
Author(s):  
Katherine I. Young ◽  
Federico Valdez ◽  
Christina Vaquera ◽  
Carlos Campos ◽  
Lawrence Zhou ◽  
...  

Vesicular stomatitis virus (VSV) emerges periodically from its focus of endemic transmission in southern Mexico to cause epizootics in livestock in the US. The ecology of VSV involves a diverse, but largely undefined, repertoire of potential reservoir hosts and invertebrate vectors. As part of a larger program to decipher VSV transmission, we conducted a study of the spatiotemporal dynamics of Simulium black flies, a known vector of VSV, along the Rio Grande in southern New Mexico, USA from March to December 2020. Serendipitously, the index case of VSV-Indiana (VSIV) in the USA in 2020 occurred at a central point of our study. Black flies appeared soon after the release of the Rio Grande’s water from an upstream dam in March 2020. Two-month and one-year lagged precipitation, maximum temperature, and vegetation greenness, measured as Normalized Difference Vegetation Index (NDVI), were associated with increased black fly abundance. We detected VSIV RNA in 11 pools comprising five black fly species using rRT-PCR; five pools yielded a VSIV sequence. To our knowledge, this is the first detection of VSV in the western US from vectors that were not collected on premises with infected domestic animals.


2021 ◽  
Author(s):  
Haddad Amar ◽  
Beldjazia Amina ◽  
Kadi Zahia ◽  
Redjaimia Lilia ◽  
Rached-Kanouni Malika

Mediterranean ecosystems are considered particularly sensitive to climate change. Any change in climatic factors affects the structure and functioning of these ecosystems and has an influence on plant productivity. The main objective of this work is to characterize one of the Mediterranean ecosystems; the Chettaba forest massif (located in the North-East of Algeria) from a vegetation point of view and their link with monthly variations using Landsat 8 satellite images from five different dates (June 25, 2017, July 27, 2017, August 28, 2017, October 15, 2017). The comparison of NDVI values in Aleppo pine trees was performed using analysis of variance and the use of Friedman's non-parametric test. The Mann-Kendall statistical method was applied to the monthly distribution of NDVI values to detect any trends in the data over the study period. The statistical results of NDVI of Aleppo pine trees indicate that the maximum value is recorded in the month of June, while the lowest values are observed in the month of August where the species studied is exposed to periods of thermal stress.


2021 ◽  
Author(s):  
Neda Abbasi ◽  
Hamideh Nouri ◽  
Sattar Chavoshi Borujeni ◽  
Pamela Nagler ◽  
Christian Opp ◽  
...  

<p>Accurate estimation of evapotranspiration (ET) helps to create a better understanding of water allocation, irrigation scheduling, and crop management especially in arid and semiarid regions where agricultural areas are far more affected by water shortage and drought events. Remote sensing (RS) facilitates estimating the ET in regions where long-term field measurements are missed.  In this study, we compare the performance of free open-access remotely sensed actual ET products at eleven counties of the Zayandehrud basin. The Zayandehrud basin, one of the major watersheds of Iran, suffers from recurrent droughts and long-term impacts of aridity. The RS products used in this study are namely WaPOR (2009-2019), MOD16A2 (2003-2019), SSEBOp (2003-2019). We also merged the two products of SSEBOp and WaPOR and assessed its performance. To prepare the Merged ETa Product (MEP), WaPOR was resampled to the spatial resolution of SSEBOp. Then, the average pixel values of the resampled ETa product and SSEBOp were calculated. To compare ETa estimations over croplands in each county, maximum Normalized Difference Vegetation Index (NDVI) maps at annual scale (2003-2019) were prepared using LANDSAT 5, 7, and 8 images. Annual mean ETa estimations were then extracted over croplands by using annual maximum NDVI layers. We compared the RS-based ETa with reported long-term ETa values extracted from the local available literature. Our results showed a consistent underestimation of MOD16A2 in all counties. The MEP and WaPOR outperformed other products in the estimation of ETa in seven. Estimations of WaPOR and SSEBOp agreed in most of the counties. Our analysis displayed that, although MOD16A2 underestimated ETa values, it could together with SSEBOp capture the drought better than that of WaPOR and MEP in the lower reaches of the basin. Further study is needed to evaluate the monthly and seasonal performance of RS-based ETa products.</p>


2020 ◽  
Vol 12 (19) ◽  
pp. 3170
Author(s):  
Zemeng Fan ◽  
Saibo Li ◽  
Haiyan Fang

Explicitly identifying the desertification changes and causes has been a hot issue of eco-environment sustainable development in the China–Mongolia–Russia Economic Corridor (CMREC) area. In this paper, the desertification change patterns between 2000 and 2015 were identified by operating the classification and regression tree (CART) method with multisource remote sensing datasets on Google Earth Engine (GEE), which has the higher overall accuracy (85%) than three other methods, namely support vector machine (SVM), random forest (RF) and Albedo-normalized difference vegetation index (NDVI) models. A contribution index of climate change and human activities on desertification was introduced to quantitatively explicate the driving mechanisms of desertification change based on the temporal datasets and net primary productivity (NPP). The results show that the area of slight desertification land had increased from 719,700 km2 to 948,000 km2 between 2000 and 2015. The area of severe desertification land decreased from 82,400 km2 to 71,200 km2. The area of desertification increased by 9.68%, in which 69.68% was mainly caused by human activities. Climate change and human activities accounted for 68.8% and 27.36%, respectively, in the area of desertification restoration. In general, the degree of desertification showed a decreasing trend, and climate change was the major driving factor in the CMREC area between 2000 and 2015.


2020 ◽  
Vol 9 (4) ◽  
pp. 257 ◽  
Author(s):  
Kiwon Lee ◽  
Kwangseob Kim ◽  
Sun-Gu Lee ◽  
Yongseung Kim

Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However, multispectral KOMPSAT-3A images with a resolution of 2.2 m are currently lacking tools or open-source resources for obtaining top-of-canopy (TOC) reflectance data. In this study, an atmospheric correction module for KOMPSAT-3A images was newly implemented into the optical calibration algorithm in the Orfeo Toolbox (OTB), with a sensor model and spectral response data for KOMPSAT-3A. Using this module, named OTB extension for KOMPSAT-3A, experiments on the normalized difference vegetation index (NDVI) were conducted based on TOC reflectance data with or without aerosol properties from AERONET. The NDVI results for these atmospherically corrected data were compared with those from the dark object subtraction (DOS) scheme, a relative atmospheric correction method. The NDVI results obtained using TOC reflectance with or without the AERONET data were considerably different from the results obtained from the DOS scheme and the Landsat-8 surface reflectance of the Google Earth Engine (GEE). It was found that the utilization of the aerosol parameter of the AERONET data affects the NDVI results for KOMPSAT-3A images. The TOC reflectance of high-resolution satellite imagery ensures further precise analysis and the detailed interpretation of urban forestry or complex vegetation features.


2019 ◽  
Vol 11 (18) ◽  
pp. 4936 ◽  
Author(s):  
Min Wang ◽  
Qing Gu ◽  
Guihua Liu ◽  
Jingwei Shen ◽  
Xuguang Tang

As an internationally important wintering region for waterfowls on the East Asian–Australasian Flyway, the national reserve of China’s East Dongting Lake wetland is abundant in animal and plant resources during winter. The hydrological regimes, as well as vegetation dynamics, in the wetland have experienced substantial changes due to global climate change and anthropogenic disturbances, such as the construction of hydroelectric dams. However, few studies have investigated how the wetland vegetation has changed over time, particularly during the wintering season, and how this has directly affected habitat suitability for migratory waterfowl. Thus, it is necessary to monitor the spatio-temporal dynamics of vegetation in the protected wetland and explore the potential factors that alter it. In this study, the data set of time-series Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) from 2000 to 2018 was used to analyze the seasonal dynamics and interannual trends of vegetation over the wintering period from October to January. The results showed that the average NDVI exhibited an overall increasing trend, with the trend rising slowly in recent years. The largest monthly mean NDVI generally occurred in November, which is pertinent to the quantity of wintering waterfowl in the East Dongting Lake wetland. Meanwhile, the mean NDVI in the wintering season is significantly correlated to temperature and water area, with apparent lagging effects. Long-term stability analysis presented a gradually decreasing pattern from the central body of water to the surrounding area. All analyses will help the government to make appropriate management strategies to protect the habitat of wintering waterfowl in the wetland.


2019 ◽  
Vol 11 (21) ◽  
pp. 2515 ◽  
Author(s):  
Ana Navarro ◽  
Joao Catalao ◽  
Joao Calvao

In Portugal, cork oak (Quercus suber L.) stands cover 737 Mha, being the most predominant species of the montado agroforestry system, contributing to the economic, social and environmental development of the country. Cork oak decline is a known problem since the late years of the 19th century that has recently worsened. The causes of oak decline seem to be a result of slow and cumulative processes, although the role of each environmental factor is not yet established. The availability of Sentinel-2 high spatial and temporal resolution dense time series enables monitoring of gradual processes. These processes can be monitored using spectral vegetation indices (VI) as their temporal dynamics are expected to be related with green biomass and photosynthetic efficiency. The Normalized Difference Vegetation Index (NDVI) is sensitive to structural canopy changes, however it tends to saturate at moderate-to-dense canopies. Modified VI have been proposed to incorporate the reflectance in the red-edge spectral region, which is highly sensitive to chlorophyll content while largely unaffected by structural properties. In this research, in situ data on the location and vitality status of cork oak trees are used to assess the correlation between chlorophyll indices (CI) and NDVI time series trends and cork oak vitality at the tree level. Preliminary results seem to be promising since differences between healthy and unhealthy (diseased/dead) trees were observed.


2012 ◽  
Vol 518-523 ◽  
pp. 5663-5667
Author(s):  
Shi Wei Li ◽  
Ji Long Zhang ◽  
Jian Sheng Yang

Vegetation covering situation is very important for the quality of air quality, soil and water conservation ability and soil forming in an area. By using the remote sensing image of Taiyuan Valley Plain, the application of Normalized Difference Vegetation Index (NDVI) and unsupervised classification, the vegetation coverage map which includes non-cultivated land disposition and cultivated land disposition was obtained using ERDAS Imagine software. To evaluate the accuracy of the results, 200 points were sampled randomly, the high spatial resolution remote sensing image from Google Earth was used as the reference. The overall classification accuracy is 82%, with the Kappa statistic of 0.81. By counting the totally pixel acreage, it was gotten that the vegetation coverage was 46% and the cultivated land coverage ratio was 31% in the study area.


Sign in / Sign up

Export Citation Format

Share Document