scholarly journals Retrieval and Mapping of Soil Organic Carbon Using Sentinel-2A Spectral Images from Bare Cropland in Autumn

2021 ◽  
Vol 13 (6) ◽  
pp. 1072
Author(s):  
Ke Wang ◽  
Yanbing Qi ◽  
Wenjing Guo ◽  
Jielin Zhang ◽  
Qingrui Chang

Soil is the largest carbon reservoir on the terrestrial surface. Soil organic carbon (SOC) not only regulates global climate change, but also indicates soil fertility level in croplands. SOC prediction based on remote sensing images has generated great interest in the research field of digital soil mapping. The short revisiting time and wide spectral bands available from Sentinel-2A (S2A) remote sensing data can provide a useful data resource for soil property prediction. However, dense soil surface coverage reduces the direct relationship between soil properties and S2A spectral reflectance such that it is difficult to achieve a successful SOC prediction model. Observations of bare cropland in autumn provide the possibility to establish accurate SOC retrieval models using the S2A super-spectral reflectance. Therefore, in this study, we collected 225 topsoil samples from bare cropland in autumn and measured the SOC content. We also obtained S2A spectral images of the western Guanzhong Plain, China. We established four SOC prediction models, including random forest (RF), support vector machine (SVM), partial least-squares regression (PLSR), and artificial neural network (ANN) based on 15 variables retrieved from the S2A images, and compared the prediction accuracy using RMSE (root mean square error), R2 (coefficient of determination), and RPD (ratio of performance to deviation). Based on the optimal model, the spatial distribution of SOC was mapped and analyzed. The results indicated that the inversion model with the RF algorithm achieved the highest accuracy, with an R2 of 0.8581, RPD of 2.1313, and RMSE of 1.07. The variables retrieved from the shortwave infrared (SWIR) bands (B11 and B12) usually had higher variable importance, except for the ANN model. SOC content mapped with the RF model gradually decreased with increasing distance from the Wei river, and values were higher in the west than in the east. These results matched the SOC distribution based on measurements at the sample sites. This research provides evidence that soil properties such as SOC can be retrieved and spatially mapped based on S2A images that are obtained from bare cropland in autumn.

2021 ◽  
Vol 13 (2) ◽  
pp. 308
Author(s):  
James Kobina Mensah Biney ◽  
Mohammadmehdi Saberioon ◽  
Luboš Borůvka ◽  
Jakub Houška ◽  
Radim Vašát ◽  
...  

Soil organic carbon (SOC) is a variable of vital environmental significance in terms of soil quality and function, global food security, and climate change mitigation. Estimation of its content and prediction accuracy on a broader scale remain crucial. Although, spectroscopy under proximal sensing remains one of the best approaches to accurately predict SOC, however, spectroscopy limitation to estimate SOC on a larger spatial scale remains a concern. Therefore, for an efficient quantification of SOC content, faster and less costly techniques are needed, recent studies have suggested the use of remote sensing approaches. The primary aim of this research was to evaluate and compare the capabilities of small Unmanned Aircraft Systems (UAS) for monitoring and estimation of SOC with those obtained from spaceborne (Sentinel-2) and proximal soil sensing (field spectroscopy measurements) on an agricultural field low in SOC content. Nine calculated spectral indices were added to the remote sensing approaches (UAS and Sentinel-2) to enhance their predictive accuracy. Modeling was carried out using various bands/wavelength (UAS (6), Sentinel-2 (9)) and the calculated spectral indices were used as independent variables to generate soil prediction models using five-fold cross-validation built using random forest (RF) and support vector machine regression (SVMR). The correlation regarding SOC and the selected indices and bands/wavelengths was determined prior to the prediction. Our results revealed that the selected spectral indices slightly influenced the output of UAS compared to Sentinel-2 dataset as the latter had only one index correlated with SOC. For prediction, the models built on UAS data had a better accuracy with RF than the two other data used. However, using SVMR, the field spectral prediction models achieved a better overall result for the entire study (log(1/R), RPD = 1.40; R2CV = 0.48; RPIQ = 1.65; RMSEPCV = 0.24), followed by UAS and then Sentinel-2, respectively. This study has shown that UAS imagery can be exploited efficiently using spectral indices.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 494 ◽  
Author(s):  
Elena Marcos ◽  
Víctor Fernández-García ◽  
Alfonso Fernández-Manso ◽  
Carmen Quintano ◽  
Luz Valbuena ◽  
...  

We analysed the relationship between burn severity indicators, from remote sensing and field observations, and soil properties after a wildfire in a fire-prone Mediterranean ecosystem. Our study area was a large wildfire in a Pinus pinaster forest. Burn severity from remote sensing was identified by studying immediate post-fire Land Surface Temperature (LST). We also evaluated burn severity in the field applying the Composite Burn Index (CBI) in a total of 84 plots (30 m diameter). In each plot we evaluated litter consumption, ash colour and char depth as visual indicators. We collected soil samples and pH, soil organic carbon, dry aggregate size distribution (MWD), aggregate stability and water repellency were analysed. A controlled heating of soil was also carried out in the laboratory, with soil from the control plots, to compare with the changes produced in soils affected by different severity levels in the field. Our results shown that changes in soil properties affected by wildfire were only observed in soil aggregation in the high severity situation. The laboratory-controlled heating showed that temperatures of about 300 °C result in a significant reduction in soil organic carbon and MWD. Furthermore, soil organic carbon showed a significant decrease when LST values increased. Char depth was the best visual indicator to show changes in soil properties (mainly physical properties) in large fires that occur in Mediterranean pine forests. We conclude that CBI and post-fire LST can be considered good indicators of soil burn severity since both indicate the impact of fire on soil properties.


2020 ◽  
Vol 12 (12) ◽  
pp. 1913 ◽  
Author(s):  
Klara Dvorakova ◽  
Pu Shi ◽  
Quentin Limbourg ◽  
Bas van Wesemael

Since the onset of agriculture, soils have lost their organic carbon to such an extent that the soil functions of many croplands are threatened. Hence, there is a strong demand for mapping and monitoring critical soil properties and in particular soil organic carbon (SOC). Pilot studies have demonstrated the potential for remote sensing techniques for SOC mapping in croplands. It has, however, been shown that the assessment of SOC may be hampered by the condition of the soil surface. While growing vegetation can be readily detected by means of the well-known Normalized Difference Vegetation Index (NDVI), the distinction between bare soil and crop residues is expressed in the shortwave infrared region (SWIR), which is only covered by two broad bands in Landsat or Sentinel-2 imagery. Here we tested the effect of thresholds for the Cellulose Absorption Index (CAI), on the performance of SOC prediction models for cropland soils. Airborne Prism Experiment (APEX) hyperspectral images covering an area of 240 km2 in the Belgian Loam Belt were used together with a local soil dataset. We used the partial least square regression (PLSR) model to estimate the SOC content based on 104 georeferenced calibration samples (NDVI < 0.26), firstly without setting a CAI threshold, and obtained a satisfactory result (coefficient of determination (R2) = 0.49, Ratio of Performance to Deviation (RPD) = 1.4 and Root Mean Square Error (RMSE) = 2.13 g kgC−1 for cross-validation). However, a cross comparison of the estimated SOC values to grid-based measurements of SOC content within three fields revealed a systematic overestimation for fields with high residue cover. We then tested different CAI thresholds in order to mask pixels with high residue cover. The best model was obtained for a CAI threshold of 0.75 (R2 = 0.59, RPD = 1.5 and RMSE = 1.75 g kgC−1 for cross-validation). These results reveal that the purity of the pixels needs to be assessed aforehand in order to produce reliable SOC maps. The Normalized Burn Ratio (NBR2) index based on the SWIR bands of the MSI Sentinel 2 sensor extracted from images collected nine days before the APEX flight campaign correlates well with the CAI index of the APEX imagery. However, the NBR2 index calculated from Sentinel 2 images under moist conditions is poorly correlated with residue cover. This can be explained by the sensitivity of the NBR2 index to both soil moisture and residues.


2020 ◽  
Author(s):  
Kathrin J. Ward ◽  
Maximilian Brell ◽  
Daniel Spengler ◽  
Fabio Castaldi ◽  
Carsten Neumann ◽  
...  

&lt;p&gt;The degradation of European soils is a cause for concern. Examples are the reduction of carbon content and soil fertility. The European Commission therefore recommends further research on how to better monitor soils and their changes over time and space. Digital soil mapping (DSM) is already an established method for the use of hyperspectral information from soil samples for quantifying soil properties under laboratory conditions based on soil spectral libraries. At the remote sensing level, imaging spectroscopy has already achieved good results for the prediction of soil properties on a local scale. Major advantages of this method are that topsoil maps can be updated more frequently, spatially more accurately and with less costs.&lt;/p&gt;&lt;p&gt;In this study we bring together pedometric and remote sensing approaches to achieve the development of soil spectral models applicable to upcoming global hyperspectral imagery, combining DSM methods and data with Earth Observation expertise. In a first step at laboratory level, we used the EU-wide topsoil database LUCAS. We investigated whether using solely spectral data (without any covariates) and selected classification algorithms combined with PLSR could allow and improve the quantification of soil organic carbon (SOC) content. The best results were obtained for the local PLSR approach with RMSE=5.16 g kg-1, RPD=1.74 and R&amp;#178;=0.67. In addition, the local PLSR approach was tested with LUCAS spectral data resampled to EnMAP satellite spectral resolution, resulting in a very similar SOC prediction model accuracy.&lt;/p&gt;&lt;p&gt;In the next step, the local PLSR approach was applied to airborne HySpex image data and simulated satellite EnMAP data from a test area in north-eastern Germany where local soil data are available for model validation. This area is associated with one LUCAS point. A direct application of the laboratory-based SOC model to the spectra of the airborne image was not possible due to higher variability in the image data caused by different environmental conditions (solar illumination, mixed soil-vegetation pixels, surface state -roughness, wetness-) and sensor performances different from the laboratory data resulting in an overall lower signal-to-noise ratio in the airborne image. Therefore, after reducing the effect of soil moisture, green vegetation cover, residues coverage, we used a two-step approach where (i) wet chemistry SOC analyses for a set of soil samples from the test area were replaced by the local PLSR approach using the LUCAS database. Then (ii) an airborne model was calibrated using the SOC content from (i) and the corresponding image spectra to calibrate an airborne PLSR. Preliminary results show a good airborne model accuracy for HySpex imagery with RMSE=3.33 g kg-1, RPD=1.59, R&amp;#178;=0.63 and slightly lower but still good accuracy for simulated EnMAP imagery with RMSE=3.72 g kg-1, RPD=1.45, R&amp;#178;=0.55. Both models were then applied to the images to produce SOC maps for bare soils and validated with existing data and previous SOC mapping works in the area based on local datasets. This approach demonstrates the possibility to replace wet chemistry by the local PLSR approach based on large scale soil spectral libraries for SOC mapping.&lt;/p&gt;


2020 ◽  
Vol 12 (18) ◽  
pp. 3082
Author(s):  
James Kobina Mensah Biney ◽  
Luboš Borůvka ◽  
Prince Chapman Agyeman ◽  
Karel Němeček ◽  
Aleš Klement

Spectroscopy has demonstrated the ability to predict specific soil properties. Consequently, it is a promising avenue to complement the traditional methods that are costly and time-consuming. In the visible-near infrared (Vis-NIR) region, spectroscopy has been widely used for the rapid determination of organic components, especially soil organic carbon (SOC) using laboratory dry (lab-dry) measurement. However, steps such as collecting, grinding, sieving and soil drying at ambient (room) temperature and humidity for several days, which is a vital process, make the lab-dry preparation a bit slow compared to the field or laboratory wet (lab-wet) measurement. The use of soil spectra measured directly in the field or on a wet sample remains challenging due to uncontrolled soil moisture variations and other environmental conditions. However, for direct and timely prediction and mapping of soil properties, especially SOC, the field or lab-wet measurement could be an option in place of the lab-dry measurement. This study focuses on comparison of field and naturally acquired laboratory measurement of wet samples in Visible (VIS), Near-Infrared (NIR) and Vis-NIR range using several pretreatment approaches including orthogonal signal correction (OSC). The comparison was concluded with the development of validation models for SOC prediction based on partial least squares regression (PLSR) and support vector machine (SVMR). Nonetheless, for the OSC implementation, we use principal component regression (PCR) together with PLSR as SVMR is not appropriate under OSC. For SOC prediction, the field measurement was better in the VIS range with R2CV = 0.47 and RMSEPcv = 0.24, while in Vis-NIR range the lab-wet measurement was better with R2CV = 0.44 and RMSEPcv = 0.25, both using the SVMR algorithm. However, the prediction accuracy improves with the introduction of OSC on both samples. The highest prediction was obtained with the lab-wet dataset (using PLSR) in the NIR and Vis-NIR range with R2CV = 0.54/0.55 and RMSEPcv = 0.24. This result indicates that the field and, in particular, lab-wet measurements, which are not commonly used, can also be useful for SOC prediction, just as the lab-dry method, with some adjustments.


Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


CATENA ◽  
2021 ◽  
Vol 205 ◽  
pp. 105442
Author(s):  
Xianglin He ◽  
Lin Yang ◽  
Anqi Li ◽  
Lei Zhang ◽  
Feixue Shen ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 769
Author(s):  
Xiaohang Li ◽  
Jianli Ding ◽  
Jie Liu ◽  
Xiangyu Ge ◽  
Junyong Zhang

As an important evaluation index of soil quality, soil organic carbon (SOC) plays an important role in soil health, ecological security, soil material cycle and global climate cycle. The use of multi-source remote sensing on soil organic carbon distribution has a certain auxiliary effect on the study of soil organic carbon storage and the regional ecological cycle. However, the study on SOC distribution in Ebinur Lake Basin in arid and semi-arid regions is limited to the mapping of measured data, and the soil mapping of SOC using remote sensing data needs to be studied. Whether different machine learning methods can improve prediction accuracy in mapping process is less studied in arid areas. Based on that, combined with the proposed problems, this study selected the typical area of the Ebinur Lake Basin in the arid region as the study area, took the sentinel data as the main data source, and used the Sentinel-1A (radar data), the Sentinel-2A and the Sentinel-3A (multispectral data), combined with 16 kinds of DEM derivatives and climate data (annual average temperature MAT, annual average precipitation MAP) as analysis. The five different types of data are reconstructed by spatial data and divided into four spatial resolutions (10, 100, 300, and 500 m). Seven models are constructed and predicted by machine learning methods RF and Cubist. The results show that the prediction accuracy of RF model is better than that of Cubist model, indicating that RF model is more suitable for small areas in arid areas. Among the three data sources, Sentinel-1A has the highest SOC prediction accuracy of 0.391 at 10 m resolution under the RF model. The results of the importance of environmental variables show that the importance of Flow Accumulation is higher in the RF model and the importance of SLOP in the DEM derivative is higher in the Cubist model. In the prediction results, SOC is mainly distributed in oasis and regions with more human activities, while SOC is less distributed in other regions. This study provides a certain reference value for the prediction of small-scale soil organic carbon spatial distribution by means of remote sensing and environmental factors.


Sign in / Sign up

Export Citation Format

Share Document