scholarly journals USE OF VIS-NIRS FOR LAND MANAGEMENT CLASSIFICATION WITH A SUPPORT VECTOR MACHINE AND PREDICTION OF SOIL ORGANIC CARBON AND OTHER SOIL PROPERTIES

2014 ◽  
Vol 41 (1) ◽  
pp. 5-6 ◽  
Author(s):  
Guillaume Debaene ◽  
Dorota Pikula ◽  
Jacek Niedzwiecki
2020 ◽  
Author(s):  
Leigh Winowiecki ◽  
Tor-Gunnar Vågen

<p>Maintaining soil organic carbon (SOC) content is recognized as an important strategy for a well-functioning soil ecosystem. The UN Convention to Combat Desertification (UNCCD) recognizes that reduced SOC content can lead to land degradation, and ultimately low land and agricultural productivity. SOC is almost universally proposed as the most important indicator of soil health, not only because SOC positively influences multiple soil properties that affect productivity, including cation exchange capacity and water holding capacity, but also because SOC content reflects aboveground activities, including especially agricultural land management. To be useful as an indicator, it is crucial to assess the importance of both inherent soil properties as well as external factors (climate, vegetation cover, land management, etc.) on SOC dynamics across space and time. This requires large, reliable and up-to-date soil health data sets across diverse land cover classes. The Land Degradation Surveillance Framework (LDSF), a well-established method for assessing multiple biophysical indicators at georeferenced locations, was employed in nine countries across the tropics (Burkina Faso, Cameron, Honduras, India, Indonesia, Kenya, Nicaragua, Peru, and South Africa) to assess the influence of land use, tree cover and inherent soil properties on soil organic carbon dynamics. The LDSF was designed to provide a biophysical baseline at landscape level, and monitoring and evaluation framework for assessing processes of land degradation and the effectiveness of rehabilitation measures over time. Each LDSF site has 160 – 1000 m<sup>2</sup> plots that were randomly stratified among 16 - 1 km<sup>2</sup> sampling clusters. A total of 6918 soil samples were collected (3478 topsoil (0-20 cm) and 3435 subsoil (20-50 cm)) within this study. All samples were analyzed using mid-infrared spectroscopy and 10% of the samples were analyzed using traditional wet chemistry to develop calibration prediction models.  Validation results for soil properties (soil organic carbon (SOC), sand, and total nitrogen) showed good accuracy with R<sup>2</sup> values ranging between 0.88 and 0.96. Mean organic carbon content was 21.9 g kg<sup>-1</sup> in topsoil and 15.2 g kg<sup>-1</sup> in subsoil (median was 18.3 g kg<sup>-1</sup>  for topsoil and 10.8 g kg<sup>-1</sup> in subsoil). Forest and grassland had the highest and similar carbon content while bushland/shrubland had the lowest. Sand content played an important role in determining the SOC content across the land cover types. Further analysis will be conducted and shared on the role of trees, land cover and texture on the dynamics of soil organic carbon and the implications for LDN reporting, land restoration initiatives as well as sustainable land management recommendations.</p>


2021 ◽  
Vol 13 (6) ◽  
pp. 1072
Author(s):  
Ke Wang ◽  
Yanbing Qi ◽  
Wenjing Guo ◽  
Jielin Zhang ◽  
Qingrui Chang

Soil is the largest carbon reservoir on the terrestrial surface. Soil organic carbon (SOC) not only regulates global climate change, but also indicates soil fertility level in croplands. SOC prediction based on remote sensing images has generated great interest in the research field of digital soil mapping. The short revisiting time and wide spectral bands available from Sentinel-2A (S2A) remote sensing data can provide a useful data resource for soil property prediction. However, dense soil surface coverage reduces the direct relationship between soil properties and S2A spectral reflectance such that it is difficult to achieve a successful SOC prediction model. Observations of bare cropland in autumn provide the possibility to establish accurate SOC retrieval models using the S2A super-spectral reflectance. Therefore, in this study, we collected 225 topsoil samples from bare cropland in autumn and measured the SOC content. We also obtained S2A spectral images of the western Guanzhong Plain, China. We established four SOC prediction models, including random forest (RF), support vector machine (SVM), partial least-squares regression (PLSR), and artificial neural network (ANN) based on 15 variables retrieved from the S2A images, and compared the prediction accuracy using RMSE (root mean square error), R2 (coefficient of determination), and RPD (ratio of performance to deviation). Based on the optimal model, the spatial distribution of SOC was mapped and analyzed. The results indicated that the inversion model with the RF algorithm achieved the highest accuracy, with an R2 of 0.8581, RPD of 2.1313, and RMSE of 1.07. The variables retrieved from the shortwave infrared (SWIR) bands (B11 and B12) usually had higher variable importance, except for the ANN model. SOC content mapped with the RF model gradually decreased with increasing distance from the Wei river, and values were higher in the west than in the east. These results matched the SOC distribution based on measurements at the sample sites. This research provides evidence that soil properties such as SOC can be retrieved and spatially mapped based on S2A images that are obtained from bare cropland in autumn.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5714 ◽  
Author(s):  
Jianli Ding ◽  
Aixia Yang ◽  
Jingzhe Wang ◽  
Vasit Sagan ◽  
Danlin Yu

Soil organic carbon (SOC) is an important soil property that has profound impact on soil quality and plant growth. With 140 soil samples collected from Ebinur Lake Wetland National Nature Reserve, Xinjiang Uyghur Autonomous Region of China, this research evaluated the feasibility of visible/near infrared (VIS/NIR) spectroscopy data (350–2,500 nm) and simulated EO-1 Hyperion data to estimate SOC in arid wetland regions. Three machine learning algorithms including Ant Colony Optimization-interval Partial Least Squares (ACO-iPLS), Recursive Feature Elimination-Support Vector Machine (RF-SVM), and Random Forest (RF) were employed to select spectral features and further estimate SOC. Results indicated that the feature wavelengths pertaining to SOC were mainly within the ranges of 745–910 nm and 1,911–2,254 nm. The combination of RF-SVM and first derivative pre-processing produced the highest estimation accuracy with the optimal values of Rt (correlation coefficient of testing set), RMSEt and RPD of 0.91, 0.27% and 2.41, respectively. The simulated EO-1 Hyperion data combined with Support Vector Machine (SVM) based recursive feature elimination algorithm produced the most accurate estimate of SOC content. For the testing set, Rt was 0.79, RMSEt was 0.19%, and RPD was 1.61. This practice provides an efficient, low-cost approach with potentially high accuracy to estimate SOC contents and hence supports better management and protection strategies for desert wetland ecosystems.


2020 ◽  
Vol 12 (18) ◽  
pp. 3082
Author(s):  
James Kobina Mensah Biney ◽  
Luboš Borůvka ◽  
Prince Chapman Agyeman ◽  
Karel Němeček ◽  
Aleš Klement

Spectroscopy has demonstrated the ability to predict specific soil properties. Consequently, it is a promising avenue to complement the traditional methods that are costly and time-consuming. In the visible-near infrared (Vis-NIR) region, spectroscopy has been widely used for the rapid determination of organic components, especially soil organic carbon (SOC) using laboratory dry (lab-dry) measurement. However, steps such as collecting, grinding, sieving and soil drying at ambient (room) temperature and humidity for several days, which is a vital process, make the lab-dry preparation a bit slow compared to the field or laboratory wet (lab-wet) measurement. The use of soil spectra measured directly in the field or on a wet sample remains challenging due to uncontrolled soil moisture variations and other environmental conditions. However, for direct and timely prediction and mapping of soil properties, especially SOC, the field or lab-wet measurement could be an option in place of the lab-dry measurement. This study focuses on comparison of field and naturally acquired laboratory measurement of wet samples in Visible (VIS), Near-Infrared (NIR) and Vis-NIR range using several pretreatment approaches including orthogonal signal correction (OSC). The comparison was concluded with the development of validation models for SOC prediction based on partial least squares regression (PLSR) and support vector machine (SVMR). Nonetheless, for the OSC implementation, we use principal component regression (PCR) together with PLSR as SVMR is not appropriate under OSC. For SOC prediction, the field measurement was better in the VIS range with R2CV = 0.47 and RMSEPcv = 0.24, while in Vis-NIR range the lab-wet measurement was better with R2CV = 0.44 and RMSEPcv = 0.25, both using the SVMR algorithm. However, the prediction accuracy improves with the introduction of OSC on both samples. The highest prediction was obtained with the lab-wet dataset (using PLSR) in the NIR and Vis-NIR range with R2CV = 0.54/0.55 and RMSEPcv = 0.24. This result indicates that the field and, in particular, lab-wet measurements, which are not commonly used, can also be useful for SOC prediction, just as the lab-dry method, with some adjustments.


2009 ◽  
Vol 28 (5) ◽  
pp. 561-567 ◽  
Author(s):  
Bin Wang ◽  
Jingwen Chen ◽  
Xuehua Li ◽  
Ya-nan Wang ◽  
Lin Chen ◽  
...  

Land ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 455
Author(s):  
Rebecca M. Swab ◽  
Nicola Lorenz ◽  
Nathan R. Lee ◽  
Steven W. Culman ◽  
Richard P. Dick

After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1871 ◽  
Author(s):  
Porntip Puttaso ◽  
Weravart Namanusart ◽  
Kanjana Thumanu ◽  
Bhanudacha Kamolmanit ◽  
Alain Brauman ◽  
...  

Leaf litter plays a major role in carbon and nutrient cycling, as well as in fueling food webs. The chemical composition of a leaf may directly and indirectly influence decomposition rates by influencing rates of biological reactions and by influencing the accumulation of soil organic carbon content, respectively. This study aimed to assess the impact of the chemical composition of rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) leaves on various soil properties of different ages of rubber (4–5, 11–12, and 22–23 year-old). Synchrotron-based Fourier transform infrared microspectroscopy (Sr-FTIR) was utilized for analyzing the chemical composition of plant leaves. The Sr-FTIR bands illustrated that the epidermis of rubber leaves from 4–5-year-old trees was found to contain a high quantity of polysaccharides while mesophyll from 22–23-year-old trees had a large number of polysaccharides. The change in soil properties in the older rubber plantation could be attributed to its chemical composition. The change in soil properties across all tree ages, i.e., increased litter and organic carbon content, was a relatively strong driver of soil biota evolution. The aliphatic of C-H in the leaves showed high correlation with soil organic carbon (SOC) and permanganate-oxidizable C (POXC) from 22–23 year-old trees. This study shows the differences in the organic chemical composition of leaves that are consequential to soil organic carbon.


Sign in / Sign up

Export Citation Format

Share Document