scholarly journals DSDet: A Lightweight Densely Connected Sparsely Activated Detector for Ship Target Detection in High-Resolution SAR Images

2021 ◽  
Vol 13 (14) ◽  
pp. 2743
Author(s):  
Kun Sun ◽  
Yi Liang ◽  
Xiaorui Ma ◽  
Yuanyuan Huai ◽  
Mengdao Xing

Traditional constant false alarm rate (CFAR) based ship target detection methods do not work well in complex conditions, such as multi-scale situations or inshore ship detection. With the development of deep learning techniques, methods based on convolutional neural networks (CNN) have been applied to solve such issues and have demonstrated good performance. However, compared with optical datasets, the number of samples in SAR datasets is much smaller, thus limiting the detection performance. Moreover, most state-of-the-art CNN-based ship target detectors that focus on the detection performance ignore the computation complexity. To solve these issues, this paper proposes a lightweight densely connected sparsely activated detector (DSDet) for ship target detection. First, a style embedded ship sample data augmentation network (SEA) is constructed to augment the dataset. Then, a lightweight backbone utilizing a densely connected sparsely activated network (DSNet) is constructed, which achieves a balance between the performance and the computation complexity. Furthermore, based on the proposed backbone, a low-cost one-stage anchor-free detector is presented. Extensive experiments demonstrate that the proposed data augmentation approach can create hard SAR samples artificially. Moreover, utilizing the proposed data augmentation approach is shown to effectively improves the detection accuracy. Furthermore, the conducted experiments show that the proposed detector outperforms the state-of-the-art methods with the least parameters (0.7 M) and lowest computation complexity (3.7 GFLOPs).

2021 ◽  
Vol 13 (9) ◽  
pp. 1703
Author(s):  
He Yan ◽  
Chao Chen ◽  
Guodong Jin ◽  
Jindong Zhang ◽  
Xudong Wang ◽  
...  

The traditional method of constant false-alarm rate detection is based on the assumption of an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under the background of sea clutter and other interferences are very low. Therefore, computer vision technology is widely discussed to improve the detection performance. However, the majority of studies have focused on the synthetic aperture radar because of its high resolution. For the defense radar, the detection performance is not satisfactory because of its low resolution. To this end, we herein propose a novel target detection method for the coastal defense radar based on faster region-based convolutional neural network (Faster R-CNN). The main processing steps are as follows: (1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real data set of coastal defense radar are performed. The mean average precision of the proposed method is improved by 10.86% compared with that of the original Faster R-CNN.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sungho Kim ◽  
Kyung-Tae Kim

Small target detection is very important for infrared search and track (IRST) problems. Grouped targets are difficult to detect using the conventional constant false alarm rate (CFAR) detection method. In this study, a novel multitarget detection method was developed to identify adjacent or closely spaced small infrared targets. The neighboring targets decrease the signal-to-clutter ratio in hysteresis threshold-based constant false alarm rate (H-CFAR) detection, which leads to poor detection performance in cluttered environments. The proposed adjacent target rejection-based robust background estimation can reduce the effects of the neighboring targets and enhance the small multitarget detection performance in infrared images by increasing the signal-to-clutter ratio. The experimental results of the synthetic and real adjacent target sequences showed that the proposed method produces an upgraded detection rate with the same false alarm rate compared to the recent target detection methods (H-CFAR, Top-hat, and TDLMS).


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yongqi Guo ◽  
Yuxu Lu ◽  
Yu Guo ◽  
Ryan Wen Liu ◽  
Kwok Tai Chui

The timely, automatic, and accurate detection of water-surface targets has received significant attention in intelligent vision-enabled maritime transportation systems. The reliable detection results are also beneficial for water quality monitoring in practical applications. However, the visual image quality is often inevitably degraded due to the poor weather conditions, potentially leading to unsatisfactory target detection results. The degraded images could be restored using state-of-the-art visibility enhancement methods. It is still difficult to generate high-quality detection performance due to the unavoidable loss of details in restored images. To alleviate these limitations, we first investigate the influences of visibility enhancement methods on detection results and then propose a neural network-empowered water-surface target detection framework. A data augmentation strategy, which synthetically simulates the degraded images under different weather conditions, is further presented to promote the generalization and feature representation abilities of our network. The proposed detection performance has the capacity of accurately detecting the water-surface targets under different adverse imaging conditions, e.g., haze, low-lightness, and rain. Experimental results on both synthetic and realistic scenarios have illustrated the effectiveness of the proposed framework in terms of detection accuracy and efficacy.


2021 ◽  
Vol 233 ◽  
pp. 02012
Author(s):  
Shousheng Liu ◽  
Zhigang Gai ◽  
Xu Chai ◽  
Fengxiang Guo ◽  
Mei Zhang ◽  
...  

Bacterial colonies detecting and counting is tedious and time-consuming work. Fortunately CNN (convolutional neural network) detection methods are effective for target detection. The bacterial colonies are a kind of small targets, which have been a difficult problem in the field of target detection technology. This paper proposes a small target enhancement detection method based on double CNNs, which can not only improve the detection accuracy, but also maintain the detection speed similar to the general detection model. The detection method uses double CNNs. The first CNN uses SSD_MOBILENET_V1 network with both target positioning and target recognition functions. The candidate targets are screened out with a low confidence threshold, which can ensure no missing detection of small targets. The second CNN obtains candidate target regions according to the first round of detection, intercepts image sub-blocks one by one, uses the MOBILENET_V1 network to filter out targets with a higher confidence threshold, which can ensure good detection of small targets. Through the two-round enhancement detection method has been transplanted to the embedded platform NVIDIA Jetson AGX Xavier, the detection accuracy of small targets is significantly improved, and the target error detection rate and missed detection rate are reduced to less than 1%.


2018 ◽  
Vol 8 (12) ◽  
pp. 2512 ◽  
Author(s):  
Ghouthi Boukli Hacene ◽  
Vincent Gripon ◽  
Nicolas Farrugia ◽  
Matthieu Arzel ◽  
Michel Jezequel

Deep learning-based methods have reached state of the art performances, relying on a large quantity of available data and computational power. Such methods still remain highly inappropriate when facing a major open machine learning problem, which consists of learning incrementally new classes and examples over time. Combining the outstanding performances of Deep Neural Networks (DNNs) with the flexibility of incremental learning techniques is a promising venue of research. In this contribution, we introduce Transfer Incremental Learning using Data Augmentation (TILDA). TILDA is based on pre-trained DNNs as feature extractors, robust selection of feature vectors in subspaces using a nearest-class-mean based technique, majority votes and data augmentation at both the training and the prediction stages. Experiments on challenging vision datasets demonstrate the ability of the proposed method for low complexity incremental learning, while achieving significantly better accuracy than existing incremental counterparts.


Author(s):  
Liqiong Chen ◽  
Lian Zou ◽  
Cien Fan ◽  
Yifeng Liu

Automatic aircraft engine defect detection is a challenging but important task in industry which can ensure safe air transportation and flight. In this paper, we propose a fast and accurate feature weighting network (FWNet) to solve the problem of defect scale variation and improve detection accuracy. The framework is designed based on recent popular convolutional neural networks and feature pyramid. To further boost the representation power of the network, a new feature weighting module (FWM) was proposed to recalibrate the channel-wise attention and increase the weights of valid features. The model was trained and tested on a self-built dataset, which consisted of 1916 images and contained three defect types: ablation, crack and coating missing. Extensive experimental results verify the effectiveness of the proposed FWM and show that the proposed method can accurately detect engine defects of different scales and different locations. Our method obtains 89.4% mAP and can run at 6FPS, which surpasses other state-of-the-art detection methods and can quickly provide diagnostic basis for aircraft maintenance inspectors in practical applications.


2020 ◽  
Vol 12 (22) ◽  
pp. 3836
Author(s):  
Carlos García Rodríguez ◽  
Jordi Vitrià ◽  
Oscar Mora

In recent years, different deep learning techniques were applied to segment aerial and satellite images. Nevertheless, state of the art techniques for land cover segmentation does not provide accurate results to be used in real applications. This is a problem faced by institutions and companies that want to replace time-consuming and exhausting human work with AI technology. In this work, we propose a method that combines deep learning with a human-in-the-loop strategy to achieve expert-level results at a low cost. We use a neural network to segment the images. In parallel, another network is used to measure uncertainty for predicted pixels. Finally, we combine these neural networks with a human-in-the-loop approach to produce correct predictions as if developed by human photointerpreters. Applying this methodology shows that we can increase the accuracy of land cover segmentation tasks while decreasing human intervention.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Zhimin Lin ◽  
Ying Zeng ◽  
Hui Gao ◽  
Li Tong ◽  
Chi Zhang ◽  
...  

Target image detection based on a rapid serial visual presentation (RSVP) paradigm is a typical brain-computer interface system with various applications, such as image retrieval. In an RSVP paradigm, a P300 component is detected to determine target images. This strategy requires high-precision single-trial P300 detection methods. However, the performance of single-trial detection methods is relatively lower than that of multitrial P300 detection methods. Image retrieval based on multitrial P300 is a new research direction. In this paper, we propose a triple-RSVP paradigm with three images being presented simultaneously and a target image appearing three times. Thus, multitrial P300 classification methods can be used to improve detection accuracy. In this study, these mechanisms were extended and validated, and the characteristics of the multi-RSVP framework were further explored. Two different P300 detection algorithms were also utilized in multi-RSVP to demonstrate that the scheme is universally applicable. Results revealed that the detection accuracy of the multi-RSVP paradigm was higher than that of the standard RSVP paradigm. The results validate the effectiveness of the proposed method, and this method can provide a whole new idea in the field of EEG-based target detection.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 28
Author(s):  
Hossein Sayadi ◽  
Yifeng Gao ◽  
Hosein Mohammadi Makrani ◽  
Jessica Lin ◽  
Paulo Cesar Costa ◽  
...  

According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 207
Author(s):  
Qi Chen ◽  
Yuanyi Zhang ◽  
Xinyuan Li ◽  
Pengjie Tao

Deep learning techniques such as convolutional neural networks have largely improved the performance of building segmentation from remote sensing images. However, the images for building segmentation are often in the form of traditional orthophotos, where the relief displacement would cause non-negligible misalignment between the roof outline and the footprint of a building; such misalignment poses considerable challenges for extracting accurate building footprints, especially for high-rise buildings. Aiming at alleviating this problem, a new workflow is proposed for generating rectified building footprints from traditional orthophotos. We first use the facade labels, which are prepared efficiently at low cost, along with the roof labels to train a semantic segmentation network. Then, the well-trained network, which employs the state-of-the-art version of EfficientNet as backbone, extracts the roof segments and the facade segments of buildings from the input image. Finally, after clustering the classified pixels into instance-level building objects and tracing out the roof outlines, an energy function is proposed to drive the roof outline to maximally align with the building footprint; thus, the rectified footprints can be generated. The experiments on the aerial orthophotos covering a high-density residential area in Shanghai demonstrate that the proposed workflow can generate obviously more accurate building footprints than the baseline methods, especially for high-rise buildings.


Sign in / Sign up

Export Citation Format

Share Document